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Parametric Jominy profiles predictor based on neural networks 
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Abstract The paper presents a method for the prediction of the Jominy hardness profiles of steels for 
microalloyed Boron steel which is based on neural networks. The Jominy profile has been 
parametrised and the parameters, which are a sort of "compact representation" of the 
profile itself, are linked to the steel chemical composition through a neural network. 
Numenrical results are presented and discussed. 
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Estimador paramétrico de perfiles de dureza 'üominy'' basado en redes neuronales 

Resumen El trabajo presenta un método de estimación de perfiles de dureza Jominy para aceros 
microaleados al boro basado en redes neuronales. Los parámetros de perfil Jominy, que 
constituyen una especie de "representación compacta" del perfil mismo, son determinados 
y puestos en relación con la composición química del acero mediante una red neuronal. Los 
resultados numéricos son expuestos y discutidos. 

Palabras clave Redes neuronales. Perfiles de dureza Jominy. Boro. 

1. INTRODUCTION 

As it is already known from the forties, Boron may 
be employed in the steel production in order to 
obtain an high increase of the hardenability of the 
products destined to thermal treatments. 

The economic benefits of the Boron utilization 
to increase hardenability, are evident: in fact an 
addition of about 5^30 ppm of the element allows 
to obtain high hardening depth characteristics 
without utilizing expensive ferroalloys. On the 
other hand, it is not always easy estimate the 
hardenability of the Boron steel due to the 
influence both of the steel chemical composition 
and manufacturing process. 

The variability of hardenability values, depends 
on a number of factors: 
- the Boron content is very low and comprised in 

rather tight range; values outside from this 
useful range jeopardize its effect; 

- the Boron quickly reacts in presence of 
Nitrogen and Oxygen forming chemical 
compounds not suitable for an hardenability 
increase: thus the Boron effect depends strongly 

on the practice and technology of the steel 
manufacturing process; 

- for Boron tightly controlled contents too, the 
effectiveness on hardenability is highly affected 
by the steel chemical composition and 
austenitic grain dimensions; 

- the austenitization temperature and the 
previous thermal history have a strong influence 
on the final results. 
The foregoing shows that the Boron addition 

may substantially affect the steel hardenability, the 
sole Boron addition may however have not any 
apparent consequence. Therefore Boron must be 
considered a very peculiar alloy element. 

Many steel producers use computer programs to 
calculate the hardenability of low alloy steels based 
on heat composition but it is very difficult to 
include boron steels in sophisticated hardenability 
predictors. 

This paper presents some more powerful 
methods based on a "structured network" made of 
two combined neural networks, where one network 
provides a "parametric model" of the Jominy profile, 
while the second "predicts the parameters" as a 
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function of chemical composition. The extracted 
parameters do have a strong relationship with the 
Jominy profile, of which they are a "compact 
representation". 

The developed predictor has been employed for 
Boron steels showing better results that that 
achievable by standard methods. 

2. PREPROCESSING OF THE INPUT DATA 

In our case, real industrial data were available for 
three particular qualities of steel (respectively, A, B 
and C). Figure 1 provides a few examples of their 
typical Jominy hardness profiles. Associated with 
each Jominy profile, we have the chemical analysis 
indicating the content of several micro-alloying 
elements present in the steel. 

Throughout this work, we consider as input 
variables the content of 17 chemical components: 
C, Mn, Si, P, S, Cr, Ni, V, Mo, Cu, Sn, Al, Ti, B, N, 
and soluble Al and B, We will call: 
~ Q G 9Î̂ '̂  the vector of chemical composition; 
- Q* G 9Î^^ the vector of "normalized" chemical 

composition, namely a vector in which each 
component is obtained by dividing the 
correspondent component of Q by its maximum 
value computed over the whole training set; 
normalization avoids the problems that arise in 
neural networks when input variables have 
different physical dimensions and standard 
deviations; 

- J(x): 9Î -^ 9Î the Jominy hardness profile as a 
function of the distance x from the quenched end; 

- J G 9Î^^ the vector containing the values of J(x^) 
at 15 predefined positions (often, Xi=1.5, 3, 5, 7, 
9 mm, etc.). 

JOMINY HARDNESS PROFILES 

qua l i ty A 

{stance ( m m ) 

Figure 1. Examples of Jominy profiles for the 3 considered 
qualities of steel. 

Figura 1. Exemple de perfiles de dureza Jominy paro las tres 
cualidades de acero. 
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To reduce the size of the neural networks used, 
we tried to reduce as much as possible the number 
of input variables to the network, without loosing 
significant information. We have therefore applied 
Principal Component Analysis^^^ namely by 
computing the eigenvalues and the associated 
eigenvectors of the covariance matrix of the 
vectors Q* contained in the training set. The 
eigenvectors associated with the largest eigenvalues 
span a subspace which contains most of the 
information available in the training set. We have 
therefore decided to retain the 6 largest 
eigenvectors, as a good compromise between 
complexity and performance. 

The projection of input data in the subspace 
spanned by these 6 vectors maintains 97 % of the 
original information and constitutes a new "input 
vector V e 9î^ to be fed into the network: 

V = M *Q* 

where M is a matrix containing as rows the 6 
principal eigenvectors. 

3. THE PARAMETRIC ESTIMATOR STRUCTURE 

Some preliminary considerations are needed 
related to traditional approaches ^̂  ^^ ^̂  : 

- the number of network outputs equals the 
number of measured points of the Jominy 
profiles, namely 15. But, from Fig.l it can be 
observed that Jominy profiles are relatively 
slowly varying, especially in the initial and the 
final parts. There is usually a little difference 
between two neighboring points and thus the 
information conveyed by these values is 
somehow redundant. Statistical correlation of 
adjacent elements of J approaches unity (-0.93), 
as well as (consequently) the correlation 
between weights of adjacent neurons. 

- Approximation errors can produce estimates of 
the Jominy profiles which are physically non 
plausible (for instance, small local increases 
instead of a monotonie decrease of the 
hardness). 

- The 15 positions where the hardness is 
measured are not evenly distributed and often 
differ among different manufacturers, therefore 
Jominy profiles cannot always be compared 
directly. In addition, even the number of points 
can often be varied (for instance, up to 18 or 19 
points are often measured). 
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- Hardness measurements are often affected by 
errors, therefore the Jominy vector J usually 
contains a relatively large quantity of noise. 
For all these and a few other reasons, we have 

decided to essay a completely different approach 
to the problem of Jominy profile estimation 
and classification, as sketched in figure 2. The 
proposed system is composed of three interacting 
blocks: 
- The small network A is used as a "parametric 

model" of the Jominy profile, that is seen as a 
function ](x), where x is the distance from the 
quenched end. The collection of free 
parameters of network A (weights, centers and 
biases) constitutes a vector P, which uniquely 
identifies an estimate of the Jominy profile and, 
consequently, of the Jominy vector J. For 
normalization purposes, the output of the 
network is multiplied by a fixed value of 65 
HRc. As P is the set of free parameters of the 
NWN, it can be evaluated by simply "training" 
the network. 

- An a-posteriori "model corrector" to reduce 
estimation error. 

- The larger network B is used as a "parameter 
estimator" which predicts the parameter vector 
P (instead of the profile itself) as a function of 
chemical composition Q (after dimensional 
reduction, through vector V). 
This approach has the following advantages: 

- the size of the parameter vector P is smaller 
than that of J, therefore network B is smaller 
than would be a network predicting J, for 
comparable accuracy. As a consequence, a 
smaller training set will suffice and a 
considerable saving in computation time and 
memory can be achieved during both training 
and relaxation. 

- If network A is properly chosen, P is less 
sensitive to measurement noise than J, therefore 
steel characterisation will be more robust. 

- P is almost independent of the number and 
position of hardness measurements. 

- P can be computed also when some 
measurements of J are missing. 

- Network A can also be used to filter and reduce 
the effects of measurement noise. 
We can therefore state that P is nothing but 

a more "compact representation" (with a small 
approximation error) of J(x) and therefore of J. 

4. RESULTS AND DISCUSSION 

At present, we have real data from 767 
manufactured commercial specimen of the three 
different Boron steel qualities. Additional 
specimen will be available in the near future. 

All specimen are in the form (Q; J) G 9î^^ x 9Î^^ 
(sometimes, —> 9î ' ). These are first preprocessed 
as described above to provide a more compact 
input'Output pair (V; J) € 9Î^ X 9î^^ (sometimes, -^ 
9Î ' ) where V and J are, respectively, the input 
and the target vectors for network A. The 
collection of all specimen data is called the data set 

A training set and a validation set are then 
constructed for each of the two networks: 
- As network A converts each Jominy profile into 

a more compact representation, each specimen 
contains in itself all the information required for 
training. From each specimen, a training set is 
generated containing the 15 pairs (xj, J(x¿)), 
where i e [1...15] is the index of the 
measurement. The network uses fixed 
initialisation, where free parameters are 
initialised to pre-computed values which 
approximate an "average" profile. Training then 
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Figure 2. The parametric neural estimator. 

Figura 2. Estimador paramétrico neuronal. 
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takes place, using the Levemberg-Marquardt 
algorithm, for up to 1.000 epochs. No validation 
set is required, as the aim of network A is only to 
generate the compact parameter vector P, i.e., the 
most accurate representation of that particular 
](x) compatible with the chosen architecture. 

- Network B is a more traditional function 
approximator which has to be trained and 
tested with two independent training and 
validation sets. Both are obtained by first 
preprocessing the elements of the data set, 
producing input-output pairs (V;P) where F is 
the result of training network A from the 
Jominy profile J associated with that particular 
V. Preprocessed data points are then distributed 
between training and validation sets 
containing, respectively, 615 and 152 specimen 
taken evenly from the three considered steel 
qualities. All additional data collected in the 
future will only be inserted in the validation set. 
As a performance index for all NWNs, we adopt 

the Standardized Root Mean Square Error (SRMSE) 
in a version suitable for multi-output networks, 
defined as: 

£ = 

i 
N M wnere 

SX(î:-î) 

1 iV M 

MN 

where N and M are, respectively, the number of 
samples in the training (or validation) set and the 
number of network outputs; f^ is the m-th 
component of the n-th output vector in the training 
(or validation) set, while is the corresponding 
network estimate. 

Both network A, and network B have been 
chosen among a large variety of network types, by 
exploiting a neural unification paradigm introduced 
in^ % which allows to implement most neural 
network by means of the same general 
computational structure. 

As far as network A is concerned, a compromise 
is needed among accuracy of the profile 
approximation and reduced dimension of the 
vector P of the network parameters. The best 
performing network is of the Multilayer Perceptron 
kind^ ^ with 1 hidden neuron and 1 output linear 
neuron, which corresponds to a 4-dimensional 
parameter vector P. A significant improvement in 
the system performance was obtained by adapting 
the activation function of the hidden neuron to 
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the particular task of the Jominy profiles 
approximation: in the improved version of the 
predictor, such activation function is itself 
obtained by means of a neural network suitably 
trained in order to mach as possible the classical 
shape of a Jominy profile. 

Network B is of the Wavelet Network^^^ type 
and contains one hidden layer with 8 neurons and a 
linear output layer with as many neurons as the 
number of entries of the vector P (4 in the final 
release of the system). 

In its final release, the system achieved an 
SRMSE value of 0.0946. Such results is far better 
than that achievable by means of standard one-net 
neural predictor, such as the one presented in^ \ A 
similar network has been tested with the available 
data: many attempts have been made by essaying 
different numbers of neurons in the hidden layers 
and different kind of neurons typologies, but the 
final SRMSE value is never lower than 0.135. 

5. CONCLUSIONS 

The problem of the prediction of the Jominy 
hardness profiles of Boron steels has been faced 
through the design of a hierarchical neural system, 
composed of two neural networks. The parametric 
characterization of the Jominy profiles, namely the 
representation of a whole Jominy curve through a 
reduced set of parameters, allowed to design a neural 
system that associates such parameters to the 
chemical composition of the steel itself, by filtering 
out and reducing the effect of measurement errors. 
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