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AAbbssttrraacctt It is proposed to develop a method to judge the certainty on the information regarding to deoxidation equilibria of
iron melts. To accomplish this objective, thermochemical data was collated and then evaluated. The basic knowledge
on deoxidation conditions are framed by the non-ideal Henrian behaviour of diluted solutions of both deoxidizer
and oxygen in liquid iron in equilibrium with a pure oxide. Conventional deoxidation reactions were considered at
1,873 K such that in their equilibrium constants, only first order interaction coefficients were considered. The criteria
in selecting the most appropriated free energy equation was based on evaluating them under two critical composition
points: 1 where they satisfy an oxygen to deoxidizer ratio dictated by its stoichiometry and 2 where oxygen
contents at a given amount of deoxidizer reaches a minimum value. These data were plotted on logarithmic scales
to appreciate the effects of deoxidizer’s valences. Once such information was classified, under restrictions 1 and 2,
previous compositions were related to deoxidizer´s electronegativities. 

KKeeyywwoorrddss Molten steel; Deoxidation; Deoxidizing agents; Dilute Solutions; Chemical equilibrium.

VVaalloorraacciióónn ddee ddaattooss tteerrmmooqquuíímmiiccooss eenn llaa ddeessooxxiiddaacciióónn ddeell aacceerroo

RReessuummeenn El presente artículo propone desarrollar un método para juzgar la certidumbre de la información pertinente al equi-
librio de desoxidación de fundidos de hierro. Para lograr este objetivo, se recolectaron y evaluaron datos termo-
químicos existentes. Las teorías sobre desoxidación se describen mediante el comportamiento Henriano de solucio-
nes diluidas del agente desoxidante y el hierro fundido en equilibrio con un óxido. En este estudio, solo se consi-
deran reacciones convencionales a 1.873 K, de forma tal que se consideraron las constantes de equilibrio y coeficientes
de interacción de primer orden. El criterio empleado para utilizar la expresión más adecuada de la energía libre se
basó en evaluar dos puntos críticos: uno, donde se satisface una relación oxígeno/desoxidante dictada por la este-
quiometría y dos,cuando el contenido de oxígeno alcanza un valor mínimo en presencia de una cantidad prede-
terminada del desoxidante. Los datos obtenidos se representaron en escalas logarítmicas de forma tal que se pu-
diese apreciar el efecto de las valencias de los desoxidantes. Con la información así clasificada y bajo las restriccio-
nes evaluadas en los puntos críticos uno y dos, las composiciones al equilibrio se relacionan con la electronegatividad
del desoxidante.

PPaallaabbrraass ccllaavvee Acero fundido; Desoxidación; Agentes desoxidantes; Soluciones diluidas; Equilibrio químico.

11.. RRAATTIIOONNAALLEE OOFF TTHHIISS WWOORRKK

Design of mechanical components to satisfy high
quality standards demands meticulously controlled
processes to such a point where chemical
compositions of melts must be satisfied within very
narrow limits. This statement becomes yet more valid
for steel melts subjected to secondary refining
processes such as vacuum ladle metallurgy or electrode
remelting processes where assertive compositions are

compulsory. These requirements are expected to be
met, since the response to further heat treatments,
enhance mechanical properties such as fracture
toughness or fatigue life among others; which in turn
are strongly dependent on the chemical composition
and microstructural homogeneity and cleanliness of
the resulting metal.

One example of a highly dependent process of
chemically restrained stages is that to obtain inclusion
shape control by ladle metallurgy. In this process, it
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is necessary to reach very low sulphur contents in
steel melts and thereafter aluminum additions must
be such that melts should reach a fully killed stage;
so afterward proceeding with calcium treatment. This
sequence of events should be considered as a standard
practice in a melt shop to a point such that even if
air oxidation prevention fails or if effects of slag
accretions on refractories affect oxygen potentials
significantly. Henceforth, measures should be at hand
to trace, prevent and solve this phenomenon
instantaneously. The desired fully killed condition
of a melt carried out by aluminum additions as well
as the calcium treatment are both very critical in the
sense that if they are inappropriate, nozzle clogging
must be expected due to precipitation of high melting
point phases. Thus, through previous assertions
one can establish that despite the fact that previous
statements are referred to non equilibrium conditions
in these processes; their control should be based on
mathematical models which include trustable
thermochemical data. Indeed, these postulates
become much more meaningful when acute
compositions of steel melts demand control to levels
of parts per million.

22.. TTHHEEOORREETTIICCAALL FFRRAAMMEE OOFF RREEFFEERREENNCCEE

A deoxidation reaction ruled by the Henrian law
in mass percent, where solutes are dissolved in pure
iron is represented by:

x[M]1%Fe + y[O]1%Fe = MxOy (1)

The equilibrium constant for reaction (1) is given
by:

(2)

If deoxidation products are pure, then their
activity is unitary, so K is reduced to:

(3)

Additionally, if solutes are infinitely diluted in
iron, then a Henrian standard state is given by:

(4)

Where, h is a Henrian activity coefficient. This
equation can be expressed as the deoxidation constant
(K’), which is the reciprocal of the former equation,
thus

(5)

By taking the logarithm of the previous equation,
it can be found a linear relationship:

(6)

By assuming real diluted solutions, values of h can
be calculated as follows:

(7a)

(7b)

where, f is commonly referred to as interaction
coefficient. 

The formal way to represent thermochemical
properties of diluted solutions in iron was originally
postulated by Wagner[1]. Such proposal is based on
Mc Laurin series, which are represented by:

(8)

As shown in equation (8), the concentration of
the species involved in the equilibria are given in
mole fractions; however, in practice it is more
convenient to express such compositions on a weight
percent basis; to do so, we use the following
relationship:

(9)

Substituting back equation (9) into equation (8)
yields:
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(10)

It is interesting to notice that the derivatives in
equation (10) represent the so called interaction
parameters; and according to the degree of the
derivatives, they represent the order of the interaction
parameter. Henceforth, by substituting accordingly
to such interaction parameters, equation (10) can be
represented by:

(11)

where, fi is the interaction coefficient of the i-th
element in the melt, ei

J is the first order interaction
parameter, ri

J is the second order interaction
parameter, ri

(J, k) is the cross interaction parameter,
%J is the deoxidizer in weight percent, %k is a second
solute in weight percent.

In view that the scope of this work is to
fundamentally address a method to make an
evaluation of the simplest thermochemical data, then
Wagner’s formalism deduced in equation (11) is
reduced to:

(12)

Equation (12) is known as Wagner’s truncated
formalism. By disclosing equation (12) in terms of
a given deoxidizer and oxygen, we obtain the
following expressions:

(13a)

(13a)

where, M represents a deoxidizer agent.
Therefore, the equilibrium constants for equations

(13a) and (13b) are given by:

(14)

Provided that previous knowledge on
thermochemistry of deoxidation is taken into

account, a frame of reference is necessary to establish
any point of comparison: (1) The primary point in
such referral is that deoxidation (in equilibrium) is
carried along to a point where oxygen in solution
reaches out the minimum content and (2) the second
referral is based primarily on calculating an
equilibrium such, that reagents and reaction products
strictly satisfy a stoichiometric ratio.
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By considering a starting point, take equation (6)
and derive it with respect to the amount of deoxidizer
M, thus it follows that:

(15)

Therefore, that equation can be expressed as:

(16)

where, x and y represent the stoichiometric
coefficients.

By including the Henrian 1 wt% standard state
in equation (16), it yields:

(17)

Applying the properties of logarithms to equation
(17) and by using the following definitions:

and

then such equation can be minimized so we obtain:

(18a)

or, its equivalent

(18b)

Therefore, if [%M] is expressed in terms of
e~2.718281, thus log e ~ 0.434, then the expression
for the minimum deoxidizer content is given by:
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22..22.. AAsssseessssmmeenntt ooff  tthhee ssttooiicchhiioommeettrriicc
ccoommppoossiittiioonn

By using the data shown in tables I to VIII, equilibria
were calculated by using equation (14). Then these
data was plotted as composition changes of [wt% O]
vs. [wt% M] at a unit activity of deoxidation product.
By imposing on such plots the stoichiometric line, a
unique composition point will be found as an
intersection of both equilibria and stoichiometric
lines.
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TTaabbllee II. Thermodynamic data for the [Al] – [O]
equilibrium in iron melts at 1,873 K

Tabla I. Datos termodinámicos para el
equilibrio [Al] – [O] en hierro fundido a 1.873 K

eeOO
AAll eeAAll

OO eeAAll
AAll LLoogg KK RReeff..

–4.1 –6.9 0.045 12.956 2
–1.17 –1.977 0.043 13.6 3
–1.25 –2.12 4
–4.09 –6.904 0.043 13.597 5
–3.847 –6.596 0.0446 13.341 6
–1.17 –1.98 0.04 12.57 7
–3.847 –6.596 0.0446 8
–5.54 –9.346 0.045 14.01 9

13.106 10
–1 –1.69 0.043 13.62 11

TTaabbllee IIII. Thermodynamic data for the [Ca] –
[O] equilibrium in iron melts at 1,873 K

Tabla II. Datos termodinámicos para 
el equilibrio [Ca] – [O] en hierro fundido a

1.873 K

eeOO
CCaa eeCCaa

OO eeCCaa
CCaa LLoogg KK RReeff..

–313 –780 –0.002 9.08 12
–310 –780 0.0 7.15 7
–990 –2500 –0.002 8

–3600 –9000
–990 –2500 –0.002 10.2 13

–515 –1290 –0.002 9.08 14
–475 –1190 –0.002 8.26 15

TTaabbllee IIIIII. Thermodynamic data for the [Ce] –
[O] equilibria (formation of Ce2O3 & CeO2) in

iron melts at 1,873 K

Tabla III. Datos termodinámicos para el
equilibrio [Ce] – [O] (formación of Ce2O3 y

CeO2) en hierro fundido a 1.873 K

eeOO
CCee eeCCee

OO eeCCee
CCee LLoogg KK LLoogg KK RReeff..

((CCee22OO33)) ((CCeeOO22))

–0.57 –5.025 0.0040 16.969 6
–12.1 106000 0.0039 17.337 09.100 16
–0.03 –0.296 17

18.568 18
17.027 19
21.103 10.747 20
21.087 10.733 21
19.573 22

TTaabbllee IIVV. Thermodynamic data for the [Cr] –
[O] equilibrium in iron melts at 1,873 K

Tabla IV. Datos termodinámicos para el
equilibrio [Cr] – [O] en hierro fundido a 1.873 K

eeOO
CCrr eeCCrr

OO eeCCrr
CCrr LLoogg KK RReeff..

–0.055 –0.189 0 23
–0.052 –0.14 –0.0003 3.963 2
–0.055 –0.188 –0.0003 3

–0.00067 3.863 5
–0.0485 –0.1675 –0.00069 3.863 24

3.767 25
3.152 26
3.969 10

–0.0578 –0.1977 –0.0003 27
–0.04 –0.14 –0.0003 28

TTaabbllee VV. Thermodynamic data for the [La] –
[O] equilibrium in iron melts at 1,873 K

Tabla V. Datos termodinámicos para el
equilibrio [La] – [O] en hierro fundido a 1.873 K

eeOO
LLaa eeLLaa

OO eeLLaa
LLaa LLoogg KK RReeff..

21.376 18
18.39 19

–5 –43.44 28
22.6457 21
19.026 22
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A second alternative to calculate such point; is
by considering that an empirically determined
equilibria can be explicitly represented by an
expression like: 

(20)

where, k=log K’
Therefore, one must look for an explicit function,

such that [wt% O]1wt%Fe = f[M]. This second proposal
can be accomplished by using MapleTM software to
transform the equilibria deoxidation reactions such
as equation (20) into:

(21)

where, λ represent the following parameter:

(22)

It is important to notice that Lambert’s function
W is also known as omega function and it is the
inverse of the following function:

(23)

where, w is a complex variable. However, since the
correlations of data regarding thermochemical
equilibria are real numbers, then only that part of the
solution is considered and the complex part is
assumed to be zero.

33.. LLIITTEERRAATTUURREE SSUURRVVEEYY

Thermochemical data on single deoxidation of
iron melts were collected from several sources[2-36].
In cases where deoxidizing elements form more than
a single solid deoxidation product a single equilibrium
was considered for each product along with its own
interaction parameters. From all the elements
considered, two of them show different oxidation
states, namely caesium and titanium. Henceforth,
where information about these equilibria was
available, it was incorporated to a table as additional
columns. 
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TTaabbllee VVII. Thermodynamic data for the [Mg] –
[O] equilibrium in iron melts at 1,873 K

Tabla VI. Datos termodinámicos para el
equilibrio [Mg] – [O] en hierro fundido a 1.873

K

eeOO
MMgg eeMMgg

OO eeMMgg
MMgg LLoogg KK RReeff..

–370 –560 7.21 2
–300 –460 7.865 29
–280 –430 0 6.80 7
–190 –290 30

TTaabbllee VVIIII. Thermodynamic data for the [Mn] –
[O] equilibrium in iron melts at 1,873 K

Tabla VII. Datos termodinámicos para 
el equilibrio [Mn] – [O] en hierro fundido a

1.873 K

eeOO
MMnn eeMMnn

OO eeMMnn
MMnn LLoogg KK RReeff..

–0.021 –0.083 0.0 1.274 31
–0.021 –0.083 0.0 23
–0.05 –0.182 1.90 32

–0.0026 5
–0.021 –0.083 0.0 8
–0.0167 –0.0875 1.606 33
–0.021 –0.083 0.0 17

1.284 10
–0.02 –0.083 0.0 27

TTaabbllee VVIIIIII. Thermodynamic data for the [Si] –
[O] equilibrium in iron melts at 1,873 K

Tabla VIII. Datos termodinámicos para el
equilibrio [Si] – [O] en hierro fundido a 1.873 K

eeOO
SSii eeSSii

OO eeSSii
SSii LLoogg KK RReeff..

–0.066 –0.119 0.103 4.676 31
–0.066 –0.119 0.103 3
–0.131 –0.233 0.103 4.676 5
–0.131 –0.23 0.107 4.639 6
–0.131 –0.23 0.107 8

4.644 10
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The Henrian behaviour of infinitely dissolved
oxygen and deoxidizer in iron in equilibrium with
their oxides with unitary activity are listed in tables
I to XI.

44.. RREESSUULLTTSS AANNDD DDIISSCCUUSSSSIIOONN

The thermochemistry of iron deoxidation is explored
by using several sources of information on deoxidizers,
oxygen and deoxidation products in equilibria with
iron. Data to carry out this task is considered as a trustful
source and these are shown in tables I to XI.
Deoxidation equilibria were calculated by assuming

the following: real Henrian behaviour of dissolved
species in iron by considering first order interaction
parameters, pure oxides or unity activity of deoxidation
products and a constant temperature, 1,873 K.
The major variations of deoxidation equilibria are

expected to be due to: (i) Change in free energy of
formation that will convey to values of log K and (ii)
magnitude of first order interaction coefficients. Thus
variations of type (i) will be identified as a parallelism
between two Henrian behaviours where they may be
either real or ideal. And, the type (ii) will be traced
as the intensity of inflections of non ideal Henrian
behaviours. The latter ones are expected to manifest
themselves around the minimum oxygen contents
and their intensities will be traced as a more
pronounced departure from the ideal Henrian
behaviour. Therefore, a more negative and higher
value of eO

M (hence eM
O) would render curlier

oxygen-deoxidizer distributions.
It is important to mention that to appreciate those

effects in a given deoxidation equilibrium; the
deoxidizing agent as well as the oxygen content are
both plotted on logarithmic scales. These results are
shown in figures 1-12. Subsequently, deoxidation
equilibria are solely represented by the critical
composition of ratios found where the stoichiometry

FFiigguurree 11.. Deoxidation with aluminium on different
steel melts at 1,873 K.

Figura 1. Desoxidación con aluminio en diferen-
tes aceros a 1.873 K.

TTaabbllee IIXX. Thermodynamic data for the [Ti] –
[O] equilibria (formation of TiO2, Ti2O3 & Ti3O5)

in iron melts at 1,873 K

Tabla IX. Datos termodinámicos para el
equilibrio [Ti] – [O] (formación of TiO2, Ti2O3 y

Ti3O5) en hierro fundido a 1.873 K

eeOO
TTii eeTTii

OO eeTTii
TTii LLoogg KK LLoogg KK LLoogg KK

((TTiiOO22)) ((TTii22OO33)) ((TTii33OO55))
RReeff

–1.12 –3.361 0.042 6.30 11.848 19.40 5
–0.60 –1.800 0.013 11.732 6

16.102 100 0
–0.40 –1.206 0.042 11.570 18.87 11

TTaabbllee XX. Thermodynamic data for the [V] – [O]
equilibrium in iron melts at 1,873 K

Tabla X. Datos termodinámicos para el
equilibrio [V] – [O] en hierro fundido a 1.873 K

eeOO
VV eeVV

OO eeVV
VV LLoogg KK RReeff..

5.6383 34
–0.30 –0.97 0.015 17

5.543 10
–0.3 –0.97 0.015 28
–0.12 –0.39 0.02 5.885 35

TTaabbllee XXII. Thermodynamic data for the [Zr] –
[O] equilibrium in iron melts at 1,873 K

Tabla XI. Datos termodinámicos para el
equilibrio [Zr] – [O] en hierro fundido a 1.873 K

eeOO
ZZrr eeZZrr

OO eeZZrr
ZZrr LLoogg KK RReeff..

–0.044 –2.6 0.02 9.955 6
–3 –17.12 17
–0.5 –2.871
–1.0 –5.721 0.032 10.28 11
–2.0 –11.42
–0.11 –0.647 0.026 35
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is satisfied and where the lowest oxygen content is
evaluated. However, it must be established that these
ratios do not represent a linear composition between
them, instead as shown in figure 1, which corresponds
to aluminium deoxidation, for several steel melts,
minima composition ratios as described earlier are
located around the major inflection of the curve. 
Thus, while figure 1 shows effects of several

activity coefficients which corresponds to various
steel melts, figure 2 shows data from table I that
includes several values for log K as well as different
values for interaction coefficients. It is interesting to
note that in both figure 1 and figure 2, composition
ratios related to stoichiometric points are less

dispersed than those representing the minima oxygen
contents. At first sight, deoxidation equilibria shown
in figures 2 to 12 can be categorized according to their
degree of dispersion. Then, three major groups can
comprise the following deoxidizing agents can be
identified, namely: 1) Ca, Mg, 2)Al, Zr, Si, Mn and
3) Cr, V, Ti and La. 
As a first estimation as to why data shows such

inconsistencies, may be attributable to: (1) accuracy
of chemical assays in respect to indexes of detection
of certain species. Under this premise, one can
appreciate that tracing calcium and magnesium in
equilibrium with oxygen, all of them infinitely
dissolved in iron, it is technically more difficult than
tracing chromium or vanadium where equilibria
contents are much higher in melts. (2) Incongruities
related to basic equilibria data such as log (K) and

FFiigguurree 33.. Comparison of equilibria data on steel
deoxidation with calcium at 1,873 K.

Figura 3. Comparativo de los datos al equilibrio
al desoxidar acero con calcio a 1.873 K.

a)

b)

FFiigguurree 44.. Comparison of equilibria data on steel
deoxidation with cerium at 1,873 K. (a) formation
of Ce2O3. (b) formation of CeO2. 

Figura 4. Comparativo de los datos al equilibrio
al desoxidar acero con cerio a 1.873 K. (a)  for-
mación de Ce2O3. (b) formación de CeO2.

FFiigguurree 22.. Comparison of equilibria data on steel
deoxidation with aluminium at 1,873 K .

Figura 2. Comparativo de los datos al equilibrio
al desoxidar acero con aluminio a 1.873 K.
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interaction parameters, (ei
J or fi). As discussed earlier,

the former effect (shown as parallelism between
Henrian’s behaviours) is observed in figures 4 a), 4
b), 6 and 8; while the latter is shown in figures 4 a),
6, 7, 9, 10, 11, 12 a) and 12 b).
If deoxidation of iron is considered as one set of

equivalent equilibria that are related by the ability
of a deoxidizer to react with oxygen, then these
critical compositional ratios can be conveniently
rearranged, according to their oxidation state. Hence,
three major groups of equilibria are considered. These
would involve oxides constituted of: bivalent,
trivalent or tetravalent deoxidizing elements. Such

set of equilibria plotted as weight percents of
deoxidizer vs oxygen on logarithmic scales show that
stoichiometric ratios are more congruent among
themselves than the ones representing minimum
oxygen contents. Such results are shown in figures
13 to 15. 
However; is worth to mention that stoichiometric

ratios as expected; show a characteristic slope for each
group of data. On the contrary, information related to
minimum oxygen contents appear as a wide band of
data without regard the valence considered in each
group. In fact, the major incongruities are those related
to the most stable lanthanide species, i.e. La/La2O3

FFiigguurree 55.. Comparison of equilibria data on steel
deoxidation with chromium at 1,873 K.

Figura 5. Comparativo de los datos al equilibrio
al desoxidar acero con cromio a 1.873 K.

FFiigguurree 77.. Comparison of equilibria data on steel
deoxidation with magnesium at 1,873 K.

Figura 7. Comparativo de los datos al equilibrio
al desoxidar acero con magnesio a 1.873 K.

FFiigguurree 66.. Comparison of equilibria data on steel
deoxidation with lanthanum at 1,873 K.

Figura 6. Comparativo de los datos al equilibrio
al desoxidar acero con lantano a 1.873 K.

FFiigguurree 88.. Comparison of equilibria data on steel
deoxidation with manganese at 1,873 K.

Figura 8. Comparativo de los datos al equilibrio
al desoxidar acero con manganeso a 1.873 K.
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and Ce/Ce2O3, see figure 15. It is also worth noting
that in the case of M2O3 oxides, both the stoichiometric
line and the lines defining the minimum oxygen
content converge to points that satisfy the condition
defined by the difference of electronegativities equal
to zero; such convergence is not observed in MO2 nor
MO oxide systems. 
A global deoxidation behaviour, which includes

most of the deoxidizers is shown in figure 15. On this
figure, both stoichiometric and minimum oxygen
contents as bands of data are shown. If the
electronegativity concept is applied to a deoxidizer
with respect to oxygen to form an oxide, then this
periodic potentiality can be used as a guideline to

reframe critical composition ratios previously cited.
By selecting the most congruent thermochemical
data to satisfy this chemical ability, better correlations
are found for both stoichiometric and minimum
composition ratios. However, it should be pointed
out that both sets of critical ratios still manifest
themselves as bands of data (Fig. 15). Strictly
speaking, electronegativities vs minimum oxygen and
stoichiometric ratios are not yet the best way of
plotting these data.
If the analysis on thermochemical data is carried

out, it can be found that inaccuracies are, as expected,
related to chemical factors such as: iron deoxidizing
agent and crucible impurities; composition of reaction
products and of course a time period to reach actual
equilibrium conditions. It is worth mentioning that
fewer incongruities are found on deoxidation
equilibria of iron melts since the advent of solid
electrolyte cells. By using these cells, true oxygen
dissolved in iron instead of total oxygen contents is
traced. Therefore, provided melts are homogeneous,
oxygen contents and temperatures monitored by these
cells are determined in situ. It is important to recall
that these experimental findings jointly with
deoxidizing assays are compelled to satisfy theoretical
grounds or vice versa.
On the other hand, despite the fact that most

equilibria on deoxidation take into account
deviations from the ideal Henrian behaviour, due
to interrelated effects among free energies of
formation or equilibrium constants and interaction
parameters, small changes in them lead to
significative variations of those results predicted by
equation (14). To bring in a closer assessment on

FFiigguurree 99.. Comparison of equilibria data on steel
deoxidation with silicon at 1,873 K.

Figura 9. Comparativo de los datos al equilibrio
al desoxidar acero con silicio a 1.873 K.

FFiigguurree 1111.. Comparison of equilibria data on steel
deoxidation with vanadium at 1,873 K.

Figura 11. Comparativo de los datos al equili-
brio al desoxidar acero con vanadio a 1.873 K.

FFiigguurree 1100.. Comparison of equilibria data on steel
deoxidation with zirconium at 1,873 K.

Figura 10. Comparativo de los datos al equili-
brio al desoxidar acero con zirconio a 1.873 K.



P. GÓMEZ, F. REYES, J. GUTIÉRREZ AND G. PLASCENCIA

314 REV. METAL. MADRID, 45 (4), JULIO-AGOSTO, 305-316, 2009, ISSN: 0034-8570, eISSN: 1988-4222, doi: 10.3989/revmetalm.0847

deviations observed in a real Henrian equilibrium,
one can observe that departures from ideality occur
at composition ratios driven towards the minimum
oxygen content, while at ratios closer to the
stoichiometric one, both real and ideal Henrian
behaviours have essentially equal ratios. The latter
finding indicates to us that a real equilibria
represented by composition ratios of oxygen vs.
deoxidizer plotted as logarithms show both a lineal
and non-lineal behaviours.
Another factor which sensibly induces deviations

of composition ratios to unreasonable values of equilibria
is that shown by deoxidizing agents with several
oxidation states. This is expected since equilibrium
conditions may be affected by more than one stable
oxide. Among these one can consider Ce and Ti, where
Ce2O3 and CeO2 and Ti2O3 and TiO2 may coexist.

By carrying out an analysis on pure chemical basis
one can find that the degree of ionic bonding between
two atoms is defined from the difference in affinity
of the species for electrons. Thus, the larger this
difference the stronger will be the tendency for
electron exchange. In other words, if the chemical
affinity is considered as a measure by which an
electron can be removed from an atom to form an
ion, such statement should be understood as the
definition of electronegativity. Under these principles,
Pauling assigned a scale of electronegativities between
two elements, which has been used to account for
bond enthalpies, percentage of ionic character of the
bond and type of oxide (basic or acidic). In this sense,
electronegativity has to be defined as the power of
an atom to attract electrons by itself when it is
combined in a compound. 

a) b)

c)

FFiigguurree 1122.. Comparison of equilibria data on steel deoxidation with titanium at 1,873 K. (a) formation
of Ti3O5, (b) formation of Ti2O3. (c) formation of TiO2. 

Figura 12. Comparativo de los datos al equilibrio al desoxidar acero con titanio a 1.873 K. (a) forma-
ción de Ti3O5, (b) formación de Ti2O3. (c) formación de TiO2.
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55.. CCOONNCCLLUUSSIIOONNSS

Thermochemical data has been analyzed and assessed
in order to have a better understanding of deoxidation
equilibria in a steelmaking melt. Treatment of the data
available shows that it is possible to establish a new
criterion to account for the ability from any deoxidizer
to remove the oxygen dissolved in the melt. This new
criterion is based upon the stoichiometric ratio between
the de-oxidant element and oxygen. This new criterion
allow for simplifying the manner in which data is
presented, this; because now depending on the
stoichiometric ratio of the oxides in the melt, they can
be gathered in a single line instead of a range of
composition. This is possible, because instead of
attending the deviations from the Henrian behaviour,
this approach takes in account the difference in
electronegativities between the deoxidizer and oxygen;
which tend to converge to a point from where it is
possible accommodate equilibrium data as straight
lines instead of a range of values. 
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