Physical modeling of the impingement of an air jet on a water surface

Authors

  • J. Solórzano-López Facultad de Química, Departamento de Ingeniería Metalúrgica, Universidad Nacional Autónoma de México
  • M. A. Ramírez-Argáez Facultad de Química, Departamento de Ingeniería Metalúrgica, Universidad Nacional Autónoma de México
  • R. Zenit Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.3989/revmetalm.0954

Keywords:

Physical modeling, Fluid flow, Gas jet, Free surface, Particle image velocimetry

Abstract


The use of gas jets (oxygen) plays a key role in several steelmaking processes as in the Basic Oxygen Furnace (BOF) or in the Electric Arc Furnace (EAF). Those jets improve heat, mass and momentum transfer in the liquid metal, mixing of chemical species enhancing and govern the formation of foaming slag. In this work experimental measurements were performed to determine the dimensions of the cavity formed at the liquid free surface caused by a gas jet impinging on it; also velocities vectors were measured in the zone affected by the gas jet. Cavities were measured from images from high speed camera and the vector maps were obtained with a Particle Image Velocimetry (PIV) technique. Both velocities and cavities were determined as a function of the main process variables: gas flow rate, distance of the nozzle from the free surface and lance angle. Cavity dimensions were statistically processed treated as a function of the process variables and also as a function of the proper dimensionless numbers that govern these phenomena. It was found thatWeber and Froude numbers govern the cavity geometry. Liquid flow driven by the jet is mainly affected by the air flow rate, lance height and angle.

Downloads

Download data is not yet available.

References

[1] D. H. Wakelin, Tesis doctoral, University of London, 1966.

[2] M. Lee, V. Whitney and N. Molloy: Scand. J. Metall. 30 (2001) 330-336. doi:10.1034/j.1600-0692.2001.300509.x

[3] S. K. Sharma, J. W. Hlinka and D. W. Kern, Ironmak. Steelmak. 4 (1977) 7-18.

[4] A. Nordqist, N. Kumbhat, L. Jonsson and P. Jonssön, Steel Res. 77 (2006) 82-90.

[5] S. C. Koria and K. W. Lange, Steel Res. 58-9 (1987) 421-426.

[6] F. Qian, R. Muthasaran and B. Farouk: Metall. Mat. Trans. B 27 (1996) 911-920. doi:10.1007/s11663-996-0004-0

[7] G.A. Subagyo, K. S. Brooks, Coley, G.A. Irons, ISIJ Int. 43 (2003) 983-989. doi:10.2355/isijinternational.43.983

[8] F. Memoli, C. Mapelli, P. Ravanelli, M. Corbella, ISIJ Int. 44 (2004) 1.342-1.349.

[9] A. R. N. Meidani, M. Isac, A. Richardson, A. Cameron and R. I. L. Guthrie: ISIJ Int. 44 (2004) 1639-1645. doi:10.2355/isijinternational.44.1639

[10] Y. Tago and Y. Higuchi, ISIJ Int. 43 (2003) 209-215. doi:10.2355/isijinternational.43.209

[11] L. Gu, G. Irons, Electric Furnace Conf. Proc. 1999, pp. 269-278.

[12] M. P. Schwarz, Fluid Flow Phenomena in Metals Processing, The Minerals, Metals & Materials Society, 1999, pp. 171-178.

[13] K. D. Peaslee, D. G. C. Robertson, The Minerals, Metals & Materials Society. EPD Congress, 1994.

[14] R. B. Banks, D. V. Chandrasekhara, J. Fluid Mech. 15 (1963) 13-34. doi:10.1017/S0022112063000021

[15] P. Mc Gee, G. A.Irons, Electric Furnace Conf. Proc., 1999, pp. 439-446.

[16] J., Szekely, Fenómenos de flujo de fluídos en el procesamiento de metales., 1ª. Edición, Editorial Limusa, México, 1988, pp. 423-424.

Downloads

Published

2010-10-30

How to Cite

Solórzano-López, J., Ramírez-Argáez, M. A., & Zenit, R. (2010). Physical modeling of the impingement of an air jet on a water surface. Revista De Metalurgia, 46(5), 421–434. https://doi.org/10.3989/revmetalm.0954

Issue

Section

Articles