Electrochemical noise of the erosion-corrosion of copper in relation with its hydrodynamic parameters

Authors

  • I. Castañeda Centro de Investigaciones en Ingeniería y Ciencias Aplicadas, CIICAp
  • M. Romero Universidad Autónoma Metropolitana, UAM Atzcapotzalco
  • J. M. Malo Instituto de Investigaciones Eléctricas
  • J. Uruchurtu Centro de Investigaciones en Ingeniería y Ciencias Aplicadas, CIICAp - Universidad Autónoma Metropolitana, UAM Atzcapotzalco

DOI:

https://doi.org/10.3989/revmetalm.1002

Keywords:

Erosion corrosion, Rotating disk, Spectra, Electrochemical noise

Abstract


This work presents the electrochemical noise results obtained of the surface degradation on copper, due to erosion corrosion phenomena, which were a function of the hydrodynamic parameters of the system (fluid movement). A modified rotating cylinder (RC) comprising three ring electrodes under two rotating speeds (880 and 1750 rpm with a Reynolds numbers 1486 Re and 2972 Re, respectively) were used. Characteristic electrochemical noise spectra as a function of the hydrodynamic parameters were found, as well as surface attack intensities the noise signal. An increase and a more uniform attack due to particle impact was related to larger particle size and lesser erosion corrosion intensity, in the form of more localized attack over the surface, was obtained for smaller ones. Erosion corrosion attack presents characteristic electrochemical current and potential noise signals, according to the laminar or transitional turbulent regime and particle size added.

Downloads

Download data is not yet available.

References

[1] J. Robbins, Ions in solution: an introduction to electrochemistry, 3rd Edition, Oxford Press, Inglaterra, 1979, pp. 67-78.

[2] J. Allen, L. Bard y R. Faulkner, Electrochemical Method: Fundamentals and Applications, 2nd. Edition, Ed. John Wiley, New York, EE.UU., 1980, pp. 273-278.

[3] J. Uruchurtu y J. L. Dawson,Mater. Sci. Forum (1985) 113-124.

[4] E. Almeida, L. Mariaca, A. Rodriguez y J. Uruchurtu, Electrochemical NoiseMeasurements for Corrosion Applications STP 1277, Ed. ASTM, New Jersey, EE.UU. 1996, pp. 412-424.

[5] J. M. Malo, J. Uruchurtu y O. M. Corona, Corrosion 58 (2002) 932-940. doi:10.5006/1.3280783

[6] G. J. Escalera-Santos, J. Uruchurtu y P. Parmananda, Phys. Rev. Lett. 90 (2003) 1-4.

[7] J. Uruchurtu-Chavarín y J.M. Malo, Trends Corros. Res. 2 (1997) 49-58.

[8] E. Sarmiento, J.G. González-Rodriguez, J.Uruchurtu, O. Sarmiento y C.Menchaca, Int. J. Electrochem. Sci. 4 (2009) 144-155.

[9] L. Mariaca, U. Cano, E. Garcia, J. M. Malo, A. Martinez-Villafañe y J. Uruchurtu, Rev. Metal. Madrid 29 (1993) 284-291.

[10] R. Urzua, J.Siqueiros, L. Morales, I. Rosales y J. Uruchurtu, P. Electrochim. Acta 27 (2009) 127-142. doi:10.4152/pea.200902127

[11] J.M. Malo y J. Velazco, Electrochemical Noise Measurement, for Corrosion Applications STP 1277, Ed. ASTM, New Jersey, EE. UU., 1996, pp. 387-397.

[12] Y. Puget, K. Threthewey y R. J. Wood, Electrochemical noise analysis of polyurethane-coated steel subjected to erosion-corrosion, Department of Mechanical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, Inglaterra, 1999.

[13] J.R. Kearns y J.R. Scully, Electrochemical Noise Measurement, for Corrosion Applications STP 1277, Ed. ASTM, New Jersey, EE. UU., 1996, pp. 446-471.

[14] R.J.K.Wood, J.A. Wharton, A.J. Speyera and K.S. Tana, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ, Inglaterra, 2001.

[15] R. Cottis y S. Turgoose, Electrochemical Impedance and Noise, Ed. NACE Internacional, Houston, EE. UU., 1999, pp. 71-93.

[16] J. Botana y M. Marcos, Ruido Electroquímico, Métodos de Análisis, 1ª Edición, Ed. SEPTEM, Oviedo, España, pp. 51-79.

[17] G. Levich, Physicochemical hydrodynamics, 1ST Edition, Prentice Hall, New Jersey, EE.UU., pp. 161-168

[18] P. Roberge y B. Syrett, Erosion-Corrosion, Ed. NACE International, EE.UU., 2004, pp. 34-47.

[19] D.C. Silverman, Corrosion Houston 60 (2004) 1.003-1.023.

[20]. T.Y. Chen, A. A.Moccari y D. D.Macdonald, Corrosion (Houston) 48 (1992) 239-248. doi:10.5006/1.3315930

[21] R. W. Staehle, Proc. of Environment-Induced Cracking ofMetals, vol. 1, Ed. NACE, Houston, EE. UU., 1989, pp. 561-61.

[22] D. Lopez, J.P. Congote, J.R. Canob, A. Torob, y A.P. Tschiptschin, Wear London 259 (2005) 118-124. doi:10.1016/j.wear.2005.02.032

[23] Study of Mass-Transport Limited Corrosion Using Pine Rotated Cylinder Electrodes, Technical Note 2006-01.

[24] P.M. Perillo y R. Haddad, Jornadas SAM- CONAMET - AAS, 2001.

[25] H. S. Klapper, J. Goellner y A. Heyn, Ingeniería & Desarrollo, 21 (2007).

[26] J.M. Sánchez-Amaya,M. Bethencourt, L. Gonzalez-Rovira y F.J. Botana, Rev. Metal. Madrid 45 (2009) 143-156

[27] E. Milotti, 1/f noise: a pedagogical review, Dipartimento di Fisica, Università di Udine and I.N.F.N, Sezione di Trieste Via delle Scienze, 208, I-33100 Udine, Italy.

Downloads

Published

2010-10-30

How to Cite

Castañeda, I., Romero, M., Malo, J. M., & Uruchurtu, J. (2010). Electrochemical noise of the erosion-corrosion of copper in relation with its hydrodynamic parameters. Revista De Metalurgia, 46(5), 446–457. https://doi.org/10.3989/revmetalm.1002

Issue

Section

Articles