A mathematical approach based on finite differences method for analyzing the temperature field in arc welding of stainless steel thin sheets

Authors

  • E. J. Martínez-Conesa Departamento Arquitectura y Tecnología de la Edificación, Escuela de Arquitectura e Ingeniería de la Edificación
  • M. Estrems Departamento Arquitectura y Tecnología de la Edificación, Escuela de Arquitectura e Ingeniería de la Edificación
  • V. Miguel Departamento de Mecánica Aplicada e Ing. de Proyectos, Escuela de Ingenieros Industriales de UCLM

DOI:

https://doi.org/10.3989/revmetalmadrid.1021

Keywords:

Numerical simulation of temperature field, Arc welding, Finite differences method, Temperature measure, Heat affected zone

Abstract


This work develops a finite difference method to evaluate the temperature field in the heat affected zone in butt welding applied to AISI 304 stainless steel thin sheet by GTAWprocess. A computer program has been developed and implemented by Visual Basic for Applications (VBA) in MS-Excel spreadsheet. The results that are obtained using the numerical application foresee the thermal behaviour of arc welding processes. An experimental methodology has been developed to validate the mathematical model that allows to measure the temperature in several points close to the weld bead. The methodology is applied to a stainless steel sheet with a thickness lower than 3 mm, although may be used for other steels and welding processes as MIG/MAG and SMAW. The data which has been obtained from the experimental procedure have been used to validate the results that have been calculated by the finite differences numerical method. The mathematical model adjustment has been carried out taking into account the experimental results. The differences found between the experimental and theoretical approaches are due to the convection and radiation heat losses, which have not been considered in the simulation model.With this simple model, the designer will be able to calculate the thermal cycles that take place in the process as well as to predict the temperature field in the proximity of the weld bead.

Downloads

Download data is not yet available.

References

[1] D. Rosenthal, Transactions ASME, 68 (1946) 849-1.946.

[2] D. Rosenthal, Weld. J. 20 (1941) 220-234.

[3] J.C. Suárez, Tesis Doctoral, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 1990.

[4] J.C. Suárez, E. Carrillo, and F. Molleda, Rev. Metal. Madrid 21 (1991) 65-72.

[5] J. C. Suárez, F. Molleda, and J. M. Gomez de Salazar, Mater. Charact. 28 (1992) 3-13. doi:10.1016/1044-5803(92)90024-C

[6] N.T. Nguyen, A. Ohta, K.Matsuoka, N. Suzuki, and Y. Maeda, Weld. J. 78 (1999) 265-274.

[7] N.T. Nguyen, Y. W. Mai, S. Simpson, and A. Ohta, Weld. J. 83 (2004) 82-93.

[8] J. Goldak, A. Chakravarti, and M. Bibby, Metall. Trans. B-Process Metallurgy, 15 (1984) 299-305. doi:10.1007/BF02667333

[9] J. Goldak, M. Bibby, J. Moore, R. House, and B. Patel,Metall. Trans. B-ProcessMetallurgy, 17 (1986) 587-600.

[10] J. A. Goldak, Computational Welding Mechanics, 1ª Ed. Springer, 2005.

[11] F.G. Lu, S. Yao, S.N. Lou, and Y.B. Li, Comp. Mater. Sci. 29 (2004) 371-378. doi:10.1016/j.commatsci.2003.10.009

[12] T. Deb-Roy, J. Szekely, and T.W. Eagar, Mater. Sci. Eng. 56 (1982) 181-193. doi:10.1016/0025-5416(82)90171-9

[13] D. Alcaraz, F. Alhama, and J. A.Moreno, Rev. Metal. Madrid 41 (2005) 299-303 .

[14] F. Alhama, D. Alcaraz, and C.F. Gonzalez- Fernández, Rev. Metal. Madrid 41 (2005) 304-308.

[15] G. Di Caprio, Los aceros inoxidables, 2ª Ed. Grupinox, Milano, Italy, 1999.

[16] J. Crank and P. Nicolson, Proceedings of the Cambridge Philosophical Society 43 (1947) 50-67. doi:10.1017/S0305004100023197

[17] V. Miguel, E.J. Martínez-Conesa, and M. Estrems, XII Congreso Internacional de Ingeniería de Proyectos, Vol. 1, Zaragoza, España, 2008, pp. 245-255.

[18] V. Miguel, A. Martinez, M. C. Manjabacas, J. Coello, and A. Calatayud, AIP Conference Proceedings, 1.181, EE.UU., 2009, pp. 170-179.

Downloads

Published

2010-12-30

How to Cite

Martínez-Conesa, E. J., Estrems, M., & Miguel, V. (2010). A mathematical approach based on finite differences method for analyzing the temperature field in arc welding of stainless steel thin sheets. Revista De Metalurgia, 46(6), 511–519. https://doi.org/10.3989/revmetalmadrid.1021

Issue

Section

Articles

Most read articles by the same author(s)