Thermal stability of nanostructured iron powder as a function of amount and nature of reinforcement (Nb or NbC)

Authors

  • L. Fuentes-Pacheco Grupo de tecnología de polvos. Dpto. de Ciencia e Ing. de Materiales e Ing. Química, IAAB, Universidad Carlos III de Madrid
  • M. Campos Grupo de tecnología de polvos. Dpto. de Ciencia e Ing. de Materiales e Ing. Química, IAAB, Universidad Carlos III de Madrid
  • J. M. Torralba Grupo de tecnología de polvos. Dpto. de Ciencia e Ing. de Materiales e Ing. Química, IAAB, Universidad Carlos III de Madrid

DOI:

https://doi.org/10.3989/revmetalm.1055

Keywords:

Niobium, Mechanical alloying, Microalloyed sintered steels, Thermal stability, Nanostructured powder, Ferritic grain growth

Abstract


In structural steels, an effective strategy to succeed in increasing both strength and toughness is the grain refining, like in microalloyed steels. To delay or even inhibit the grain growth there are two basic mechanisms: particle pinning and solute drag. The effect of the presence of small particles of NbC to inhibit the austenitic grain growth is well known. However, it is not so clear which mechanism will be more effective to delay ferritic grain growth. In order to confirm it, nanostructured iron powders reinforced with Nb and NbC have been prepared by mechanical alloying. The main objective of this work is, therefore, to study the thermal stability of the nanostructured powder as a function of the reinforce type (elemental Nb or NbC) and its content.

Downloads

Download data is not yet available.

References

[1] B.K. Panigrahi, S. Mishra y S. Sen, Trans. of the Indian Inst. of Metals, 39 (3) (1986) 241-272.

[2] T. Gladman, The Physical Metallurgy of Microalloyed Steels, Ed. Ashgate Publishing with The Institute of Materials, 1997, pp. 19-78.

[3] H. K. D. H. Bhadeshia, Mater. Sci. Technol. 21 (2005) 1.293-1.302.

[4] D. L. Zhang. Prog. Mater. Sci. 49 (2004) 537-560. http://dx.doi.org/10.1016/S0079-6425(03)00034-3

[5] C.C. Koch, O.B. Cabin, C.G. Mclamey y J.O. Scarbough, Appl. Phys. Lett. 43 (1983) 1.017-1.019.

[6] H. J. Fecht, NanoStruct. Mater. 6 (1995) 33-42.

[7] C.C. Koch, NanoStruct. Mater. 9 (1997) 13-22.

[8] J. Eckert, J.C. Holzer, C.E. Krill y W.L. Johnson, J. Mater. Res. 7 (1992) 1.751-1.761.

[9] C.H. Moelle y H. J. Fecht. NanoStruct. Mater. 6 (1995) 421-424.

[10] E. Bonetti, L. del Bianco, L. Pasquín y E. Sampaolesi, NanoStruct. Mater. 12 (1999) 685-688.

[11] C. Zener. Private communication to C.S. Smith. Tran. Amer. Inst. Min. Metall. Engres. 175 (1953) 15-51.

[12] T. Gladman, Proc. of the Royal Society of London, 294, Issue 1438 (1966) 298-309.

[13] K. Lücke y H.P. Stüwe, Recovery and Recrystallization in Metals. Ed. Interscience Publications, 1963, pp. 171-210.

[14] J.W. Cahn, Acta Metall. 10 (1962) 789-798. http://dx.doi.org/10.1016/0001-6160(62)90092-5

[15] D. San Martín, F.G. Caballero, C. Capdevila y C. García de Andrés, Rev. Metal. Madrid 42 (2006) 128-137.

[16] Y.H. Zhao, H.W. Sheng y K. Lu, Acta Mater. 49 (2001) 365-375. http://dx.doi.org/10.1016/S1359-6454(00)00310-4

[17] F. A. Mohamed, Marter. Sci. Eng. A354 (2003) 133-139.

[18] J.C. Rawers, R. Krabbe, D.C. Cook y T.H. Kim, NanoStruct. Mater. 9 (1997) 145-148.

[19] C.R. Hutchinson, H.S. Zurob, C.W. Sinclair, y J.M. Brechet, Scripta Mater. 59 (2008) 635-637. http://dx.doi.org/10.1016/j.scriptamat.2008.05.036

Downloads

Published

2011-10-30

How to Cite

Fuentes-Pacheco, L., Campos, M., & Torralba, J. M. (2011). Thermal stability of nanostructured iron powder as a function of amount and nature of reinforcement (Nb or NbC). Revista De Metalurgia, 47(5), 373–380. https://doi.org/10.3989/revmetalm.1055

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>