Contact stress by the method of finite elements of the steel AISI 1045 hardened by roller

Authors

  • T. Fernández-Columbié Instituto Superior Minero Metalúrgico de Moa, Holguín
  • I. Rodríguez-González Instituto Superior Minero Metalúrgico de Moa
  • D. Alcántara-Borges Instituto Superior Minero Metalúrgico de Moa
  • E. Fernández-Guilarte Instituto Superior Minero Metalúrgico de Moa

DOI:

https://doi.org/10.3989/revmetalm.1066

Keywords:

Plastic deformation, Stress, Deformation, Hardening, Simulation

Abstract


In this paper, the tense-deformational behavior is analyzed by means of simulation using the finite element method for AISI 1045 cold rolled deformed steel. ANYSYS V.10 software was used in this study. Revolution number, compressive strength and tool feed rate were the variables considered in the deformation process. They allowed determining the contact stress of the deformed material. The material used was 30 mm diameter and 100 mm length. Samples of 30 mm diameter and 3 mm thickness were prepared for the optical microscopic observation, which were compared to the results obtained from the simulation. The tensile status of the deformed samples was evaluated as from the reduction of the average size of the grains as per the strength applied. This study intends to show that the cold hardening method is a surface hardening option.

Downloads

Download data is not yet available.

References

[1] E. Álvarez, J. Lancestremere, J. Mareglia y J. Barr, Rev.Tec. Mec. 20 (2004) 69-76.

[2] S. Rose, Soc. Manuf. Eng. 3 (2000) 16-38.

[3] T. Gabb, J. Telesman, P. Kantzos y P. Prevey, Adv. Mater. Process. 160 (2002) 69-72.

[4] C. Barret, Estructura de los metales, (1ª Ed.), Ed. Aguilar, Madrid, España, 1957, pp. 532-550.

[5] B.D. Cullity, Elements of X-Ray Diffraction, (3ª Ed.), Ed. Addison-Wesley Publishing Company, Inc. American Society for Metals, EE.UU. 1967, pp. 248-253.

[6] J. Caubet, Teoría y Práctica Industrial del rozamiento, (3ª Ed.), Ed. Aguilar, Madrid, España, 1971, pp 229-243.

[7] A. Guliaev, Metalografía, Tomo I, Ed. Mir, Moscú, Rusia, 1983, pp. 53-89.

[8] L. Korotcishe, Procesos progresivos en la deformación plástica superficial por rodadura, Ed. Mir, Moscú, Rusia, 1989, pp. 53-64.

[9] S. Hernández, Metodología de la Investigación, Ed McGraw - Hil, México, 1997, pp. 132-145.

[10] T. Ingham y E. Moreland, Industrial Quality Control 1 (1983) 26-31.

[11] W. Alfaro, Simulación de procesos, Monografía 15 Vol. 15 (2001) En: http://www.monografías.com/trabajos6/.

[12] J. Bhate y N. Dvorkin, Prentice Hall, 1 (1984) 77-78.

[13] V. Thomée, Galerkin finite element methods for parabolic problems, Springer Verlag, Berlin, 6, 1997, pp. 432-442.

[14] H. Huang y A Usmani, Finite element analysis for heat transfer, Springer-Verlag, Berlin 98, 1994, pp. 35-38.

[15] O. Boada, S. Díaz e Y. Campos, Rev. Ing. Mec., 6 (2003) 53-58.

[16] V. Belozerov, A. Makhatilova y V. Subbotina, National Technical University, 38 (2006) 144-148.

[17] A. Bower y K. Johnson, Sol. Phys. 37 (1989) 471-493. http://dx.doi.org/10.1016/0022-5096(89)90025-2

Downloads

Published

2012-02-28

How to Cite

Fernández-Columbié, T., Rodríguez-González, I., Alcántara-Borges, D., & Fernández-Guilarte, E. (2012). Contact stress by the method of finite elements of the steel AISI 1045 hardened by roller. Revista De Metalurgia, 48(1), 5–12. https://doi.org/10.3989/revmetalm.1066

Issue

Section

Articles