Modeled transport of As (V) in the Nernst layer of an electro dialysis cell

Authors

  • J. P. Ibáñez Departamento de Ciencia de Materiales, Universidad Técnica Federico Santa María
  • A. Aracena Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso
  • C. Cifuentes Departamento de Ingeniería de Minas, Universidad de Chile

DOI:

https://doi.org/10.3989/revmetalm.1124

Keywords:

Electro dialysis, Oxianions of arsenic, Transport number, Nernst layer, Arsenic ions flux, Model

Abstract


The transport of As (V) oxianions was modeled through the boundary layer generated between the bulk of an acidic As (V) electrolyte and the surface of an anionic exchange membrane during a batch electro dialysis process without agitation. The model was adapted from one developed for the transport of Cu (II) ions in the Nernst layer under the same hydrodynamic and electric conditions. The model shows the flux of oxianions in terms of the difference between the transport number of As (V) in the boundary layer and in the membrane as a function of the current density. The model approaches to the experimental data when the transport number in the boundary layer is 1.5x10-4 and 1.5x10-5 for As (V)-H2SO4 and As (V)-Cu (II)-H2SO4 electrolytes, respectively. The validation of the model was made with published data of As (V) transport.

Downloads

Download data is not yet available.

References

[1] E. Korngold, K. Kock and H. Strathmann, Desalination, 24 (1978) 129-139. http://dx.doi.org/10.1016/S0011-9164(00)88079-0

[2] A. Chapotot, V. López, A. Lindheimer, N. Aouad and C. Gavach, Desalination 101 (1995) 141-153. http://dx.doi.org/10.1016/0011-9164(95)00017-V

[3] D.E. Akretche, A. Gherrou y H. Kerdjoudj, Hydrometallurgy 46 (1997) 287-301. http://dx.doi.org/10.1016/S0304-386X(97)00026-1

[4] X. Tongwen, Resour. Conserv. Recy 37 (2002) 1-22. http://dx.doi.org/10.1016/S0921-3449(02)00032-0

[5] T. Xu, Desalination 140 (2001) 247-258. http://dx.doi.org/10.1016/S0011-9164(01)00374-5

[6] A. Rojo, H.K. Hansen y L.M. Ottosen, Miner. Eng. 19 (2006) 500-504. http://dx.doi.org/10.1016/j.mineng.2005.08.016

[7] E. Paquay, A.M. Clarinval, A. Delvaux, M. Degrez y H.D. Hurwitz, Chem. Eng. J. 79 (2000) 197-201. http://dx.doi.org/10.1016/S1385-8947(00)00208-4

[8] J. Lambert, M. Rakib, G. Durand y M. Ávila-Rodríguez, Desalination 191 (2006) 100-110. http://dx.doi.org/10.1016/j.desal.2005.06.035

[9] T. Sata, Pure. Appl. Chem. 58 (1986) 1.613-1.626.

[10] D. Flett, Hydrometallurgy 30 (1992) 327-344. http://dx.doi.org/10.1016/0304-386X(92)90092-E

[11] L. Cifuentes, G. Crisóstomo, J.P. Ibáñez, J.M. Casas, F. Álvarez, y G. Cifuentes, J. Membr. Sci. 207 (2002) 1-16. http://dx.doi.org/10.1016/S0376-7388(01)00733-5

[12] J.P. Ibáñez, C. Gutiérrez y L. Cifuentes, Proc. Yazawa Int. Symposium, F. Kongoli, K. Itagaki, C. Yamauchi. Y H.Y. Sohn (Eds.), Pub. by TMS, San Diego, EE.UU, March 2-6, 2003, pp. 117-125.

[13] J.P. Ibáñez, E. Vargas and L. Cifuentes, II South American Mining Meeting, J.P. Ibáñez (Eds.), Chile, 2001, pp. 149-157.

[14] J.P. Ibáñez y L. Cifuentes, Can. Metall. Q. 43 (2004) 439-448.

[15] L. Cifuentes, J. Simpson y J.P. Ibáñez, Workshop Hidro-Electrometalurgia, G. Cifuentes (Ed.), Universidad de Santiago de Chile, Viña del mar, Chile, 2001, pp. 28-30.

[16] J.P. Ibáñez, J. Ipinza y L. Cifuentes, Rev. Metal. Madrid, 43 (2007) 5-10.

[17] L. Picincu y D. Pletcher, J. Membr. Sci. 147 (1998) 257-263. http://dx.doi.org/10.1016/S0376-7388(98)00128-8

[18] A. Chapotot, G. Pourcelly and C. Gavach, J. Membr. Sci. 96 (1994) 167-181. http://dx.doi.org/10.1016/0376-7388(94)00107-3

[19] J.P. Ibáñez, A. Aracena, J. Ipinza y L. Cifuentes, Rev. Metal. Madrid 40 (2004) 83-88.

[20] Y. Lorrain, G. Pourcelly y C. Gavach, Desalination 109 (1997) 231-239. http://dx.doi.org/10.1016/S0011-9164(97)00069-6

[21] M. Taky, G. Pourcelly y A. Elmidaoui, Hydrometallurgy 43 (1996) 63-78. http://dx.doi.org/10.1016/0304-386X(96)00020-5

[22] J.O’M. Bockris y A.K.N. Reddy, Electroquímica Moderna, 1ª Ed., Reverte S.A. (Ed.), 1978, pp. 421-424.

[23] J.V. Macpherson y P.R. Unwin, Anal. Chem. 71 (1999) 2.939-2.944.

[24] J.V. Macpherson y P.R. Unwin, Anal. Chem. 71 (1999) 4.642-4.648.

[25] A.L. Barker, M. Gonsalves, J.V. Macpherson, C.J. Slevin y P.R. Unwin, Anal. Chim. Acta 385 (1999) 223-240. http://dx.doi.org/10.1016/S0003-2670(98)00588-1

[26] H. Kawate, K. Tsuzura y H. Shimizu, Ion Exchangers, 1st Edition, Konrad Dorfner (Ed.) EE.UU, 1991, pp. 630-631.

[27] M. Mulder, Basic Principles of Membrane Technology, 2nd Edition, Kluwer Academic Publishers, EE.UU. 2000, pp. 442-443.

[28] Sitio web: http://www.ionexchange.com

[29] J.M. Casas, J.P. Etchart y L. Cifuentes, AIChE Journal 49 (2003) 2.199-2.210.

[30] A. Aracena, Universidad Arturo Prat (2004) pp. 33-52.

Downloads

Published

2012-02-28

How to Cite

Ibáñez, J. P., Aracena, A., & Cifuentes, C. (2012). Modeled transport of As (V) in the Nernst layer of an electro dialysis cell. Revista De Metalurgia, 48(1), 24–32. https://doi.org/10.3989/revmetalm.1124

Issue

Section

Articles