Non-isothermal microcalorimetric evaluations in quenched and in cold-rolled Cu-9Ni-5.5Sn alloys

Authors

  • E. Donoso Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ciencia de los Materiales
  • M. J. Diáñez Instituto de Ciencias de Materiales de Sevilla
  • J. M. Criado Instituto de Ciencias de Materiales de Sevilla

DOI:

https://doi.org/10.3989/revmetalm.1136

Keywords:

Copper, Cu-Ni-Si, Precipitation, Microcalorimetry

Abstract


The thermal aging of both a quenched and a cold rolled homogeneous supersaturated Cu-9 % wt Ni-5.5 wt % Sn alloy has been studied from differential scanning calorimetry (DSC) and microhardness measurements. An increase of the hardness during the aging of the quenched sample, because of the precipitation of a Υ´ phase, takes place. On the contrary, no hardness increase was observed during the aging of the cold rolled sample. A theoretical analysis of the enthalpy determined from the first DSC exothermic peak suggests that a segregation of the solute towards the dislocations occurs during the aging of the cold rolled alloy. The values of the n Avrami-Erofeev coefficients estimated from the kinetic analysis supports the above interpretations.

Downloads

Download data is not yet available.

References

[1] J. Miettinen, Computer Couplin of Phase Diagrams and Thermochemistry 27 (2003) 309-318. http://dx.doi.org/10.1016/j.calphad.2003.10.001

[2] B. Alili, D. Braday y P. Zieba, Mat. Charact. 59 (2008) 1.526-1.530.

[3] P. Sahu, S.K. Pradham y M. De, J. Alloys Comp. 377 (2004)103-116.

[4] E.G. Baburaj, U.D. Kulkarni, E.S.K. Menon y R. Krishnan, J. Appl. Cryst. 12 (1979) 476-480. http://dx.doi.org/10.1107/S0021889879013066

[5] P. Kratochvil, J. Mencl, J. Pesickay y S.N. Kominik, Acta Metall. 32 (1984) 1.493-1.497.

[6] P. Kratochvily J. Pesicka, J. Mater. Sci. 24 (1989) 2.433-2.436.

[7] P. Virtaneny y T. Tiainen, Mater.Sci. Eng. A 238 (1997) 407-410. http://dx.doi.org/10.1016/S0921-5093(97)00462-0

[8] P. Virtanen, T. Tiaineny y T. Lepistö, Mater. Sci. Eng. A251 (1998) 269-275. http://dx.doi.org/10.1016/S0921-5093(98)00498-5

[9] J.C. Zhaoy y M.R. Notis, Scripta. Metall. 39 (1998) 1.509-1.516.

[10] J.C. Rhu, S.S. Kim, Y.C. Jung, S.Z. Hany y C.J. Kim, Metall. Trans. A 30 (1999) 2.649-2.657.

[11] N. Lourenço y H. Santos, J. Mater. Eng. Perform. 14 (2005) 480-486. http://dx.doi.org/10.1361/105994905X56160

[12] F. Sadiy C. Servant y J.Thermal, Anal. Cal. 90 (2007) 319-323. http://dx.doi.org/10.1007/s10973-007-8347-6

[13] E. Donoso, M.J. Diánez, J.M. Criado, A. Perejón, M.J. Sayagués y L.A. Pérez-Maqueda, 11th Interamerican Congress on Microscopy - CIASEM, Mérida-Mexico, 2011, M-MA13.

[14] F.R.N. Nabarro, Acta Metall. Mater. 38 (1990) 161-164. http://dx.doi.org/10.1016/0956-7151(90)90044-H

[15] M. Militzer, W.P. Sun y J.J. Jonas, Acta Metall. Mater. 42 (1994) 133-141. http://dx.doi.org/10.1016/0956-7151(94)90056-6

[16] A. Varschavsky y E. Donoso, Mater.Sci. Eng. A 251 (1998) 208-215. http://dx.doi.org/10.1016/S0921-5093(98)00616-9

[17] A. Varschavsky y E. Donoso, J. Thermal Anal.Cal. 76 (2004) 853-870. http://dx.doi.org/10.1023/B:JTAN.0000032270.93974.40

[18] A. Varschavsky y E. Donoso, J. Thermal Anal. Cal. 57 (1999) 607-622. http://dx.doi.org/10.1023/A:1010157201192

[19] E. Donoso y A. Varschavsky, Rev. Metal. 35 (1999) 33-38. http://dx.doi.org/10.3989/revmetalm.1999.v35.i1.603

[20] A. Varschavsky y E. Donoso, J. Thermal Anal. 50 (1997) 533-545. http://dx.doi.org/10.1007/BF01979026

[21] E. Donoso y A. Varschavsky, Rev. Metal. 33 (1997) 3-9. http://dx.doi.org/10.3989/revmetalm.1997.v33.i1.873

[22] A. Varschavsky y E. Donoso, J. Thermal Anal.Cal. 8 (2002) 231-241. http://dx.doi.org/10.1023/A:1014969618372

[23] A.Varschavsky y E. Donoso, Materials Lett. 57 (2003) 1.266-1.271.

[24] A. Varschavsky y E. Donoso, Mater.Sci. Eng. A145 (1991) 95-107. http://dx.doi.org/10.1016/0921-5093(91)90299-3

[25] A. Perejón, P.E. Sánchez-Jiménez, J.M. Criado y L.A. Pérez-Maqueda, J. Phys. Chem. 115 (2011) 1.780-1.791.

[26] J.D. Eshelby, “Physics of metals-defects”, P.B. Hirsch (Ed.), Univ. of Cambridge Press, 1975.

[27] B. Viguier, Mater. Sci. Eng. A349 (2003) 132-135. http://dx.doi.org/10.1016/S0921-5093(02)00785-2

[28] A. Rohatgi y K.S. Wecchio, Mater. Sci. Eng. A328 (2002) 256-266. http://dx.doi.org/10.1016/S0921-5093(01)01702-6

[29] H.P. Stüwe, A.F. Padilha y F. Siciliano Jr., Mater. Sci. Eng. A333 (2002) 361-367. http://dx.doi.org/10.1016/S0921-5093(01)01860-3

[30] E.J. Mittemeijer, L. Cheng, P.J. Van der Shaaf, C.M. Brakmany y B.M. Korevaar, Metall.Trans. A 19 (1988) 925-932. http://dx.doi.org/10.1007/BF02628377

[31] A.M. Brown y M.F. Ashby, Acta Metall. 28 (1980) 1.266-1.271.

[32] T. Ozawa, J. Thermal Anal. 9 (1976) 369-373. http://dx.doi.org/10.1007/BF01909401

[33] J.W. Christian, “The theory of transformations in metals and alloys. Part I: Equilibrium and general kinetics theory”, Pergamon Press, 1975, pp. 542.

Downloads

Published

2012-02-28

How to Cite

Donoso, E., Diáñez, M. J., & Criado, J. M. (2012). Non-isothermal microcalorimetric evaluations in quenched and in cold-rolled Cu-9Ni-5.5Sn alloys. Revista De Metalurgia, 48(1), 67–75. https://doi.org/10.3989/revmetalm.1136

Issue

Section

Articles