Dynamic deformation of high pressure die-cast magnesium alloys

Authors

  • N. V. Dudamell IMDEA Materials Institute
  • F. Gálvez ETS Ingenieros de Caminos, Universidad Politécnica de Madrid
  • M. T. Pérez-Prado IMDEA Materials Institute

DOI:

https://doi.org/10.3989/revmetalm.1201

Keywords:

Magnesium, High strain rate, Twinning, AM60, AZ91

Abstract


The dynamic behavior of the die-cast Mg-6 % Al-0.5 % Mn and Mg-9 % Al-1 % Zn alloys has been investigated in a wide range of temperatures and compared to the quasi-static behavior. It has been found that, at high strain rates, these alloys possess very good energy absorption capacity and that twinning is significantly enhanced. The small variability in the tensile ductility at dynamic rates is attributed to the independence of the adiabatic shear failure mechanism of the porosity distribution.

Downloads

Download data is not yet available.

References

[1] H. E. Friedrich and B. L. Mordike, Magnesium Technology: Metallurgy, Design Data, Applications, Springer Verlag, Berlin- Heidelberg, Germany, 2006.

[2] S. G. Lee, G. R. Patel, A. M. Gokhale, A. Sreeranganathan and M. F. Horstemeyer, Scripta Mater. 53 (2005) 851-856. http://dx.doi.org/10.1016/j.scriptamat.2005.06.002

[3] J. P. Weiler and J. T. Wood, Mater. Sci. Eng. 527 (2009) 25-31. http://dx.doi.org/10.1016/j.msea.2009.08.060

[4] J.P. Weiler and J.T. Wood, Mater. Sci. Eng. 527 (2009) 32-37. http://dx.doi.org/10.1016/j.msea.2009.08.061

[5] C. D. Lee, Mater. Sci. Eng. 454-455 (2007) 575-580. http://dx.doi.org/10.1016/j.msea.2006.11.064

[6] J. P. Weiler, J. T. Wood, R. J. Klassen, E. Maire, R. Berkmortel and G. Wang. Mater. Sci. Eng. 395 (2005) 315-322. http://dx.doi.org/10.1016/j.msea.2004.12.042

[7] Y. H. Wei, L. F. Hou, L. J. Yang, B. S. Xu, M. Kozuka and H. Ichinose, J. Mater. Process. Tech. 209 (2009) 3278-3284. http://dx.doi.org/10.1016/j.jmatprotec.2008.07.034

[8] D. G. L. Prakash, D. Regener and W. J. J. Vorster, J. Alloys Compd. 470 (2009) 111-116. http://dx.doi.org/10.1016/j.jallcom.2008.02.051

[9] J. Song, S. M. Xiong, M. Li and J. Allison, J. Alloys Compd. 477 (2009) 863-869. http://dx.doi.org/10.1016/j.jallcom.2008.11.040

[10] C. Dørum, O. S. Hopperstad, T. Berstad and D. Dispinar, Eng. Fract. Mech. 76 (2009) 2232- 2248. http://dx.doi.org/10.1016/j.engfracmech.2009.07.001

[11] H. Mayer, M. Papakyriacou, B. Zettl and S. E. Stanzl-Tschegg, Int. J. Fatigue 35 (2003) 245-256. http://dx.doi.org/10.1016/S0142-1123(02)00054-3

[12] S. G. Lee, A. M. Gokhale, G. R. Patel and M. Evans, Mater. Sci. Eng. 427 (2006) 99-111. http://dx.doi.org/10.1016/j.msea.2006.04.082

[13] S. G. Lee and A. M. Gokhale, Scripta Mater. 55 (2006) 387-390. http://dx.doi.org/10.1016/j.scriptamat.2006.04.040

[14] I. Ulacia, N. V. Dudamell, F. Gálvez, S. Yi, M. T. Pérez-Prado and I. Hurtado, Acta Mater. 58 (2010) 2988. http://dx.doi.org/10.1016/j.actamat.2010.01.029

[15] N. V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado and M. T. Pérez- Prado, Acta Mater. 2011, in press.

[16] K. Ishikawa, H. Watanabe and T. Mukai, Mater. Lett. 59 (2005) 1511. http://dx.doi.org/10.1016/j.matlet.2005.01.012

[17] K. Ishikawa, H. Watanabe and T. Mukai, J. Mater. Sci. 40 (2005) 1577. http://dx.doi.org/10.1007/s10853-005-0656-1

[18] H. Watanabe and K. Ishikawa, Mater. Sci. Eng. 523 (2009) 304. http://dx.doi.org/10.1016/j.msea.2009.06.019

[19] I. Ulacia, C. P. Salisbury, I. Hurtado and M. J. Worswick, J. Mater. Process. Tech. 211 (2011) 830. http://dx.doi.org/10.1016/j.jmatprotec.2010.09.010

[20] E. El-Magd and M. Abouridouane, J. Phys. IV 110 (2003) 15-20.

[21] L. E. Murr and C. Pizaña, Metall. Mater. Trans. A 38 (2007) 2611. http://dx.doi.org/10.1007/s11661-007-9185-7

[22] D. L. Zou, L. Zhen, Y. Zhu, C. Y. Xu, W. Z. Shao and B. J. Pang, Mater. Sci. Eng. 527 (2010) 3323. http://dx.doi.org/10.1016/j.msea.2010.02.037

[23] D. Rittel and Z. G. Wang, Mech. Mater. 40 (2008) 629-635. http://dx.doi.org/10.1016/j.mechmat.2008.03.002

[24] G. Wan, B. L. Wu, Y. H. Zhao, Y. D. Zhang and C. Esling. Scripta Mater. 65 (2011) 461-464. http://dx.doi.org/10.1016/j.scriptamat.2011.05.020

[25] B. L. Wu, G. Wan, Y. D. Zhang and C. Esling. Mater. Lett. 64 (2010) 636-639. http://dx.doi.org/10.1016/j.matlet.2009.12.029

[26] M. T. Tucker, M. F. Horstemeyer, P. M. Gullett, H. El-Kadiri and W. R. Whittington, Scripta Mater. 60 (2009) 182-185. http://dx.doi.org/10.1016/j.scriptamat.2008.10.011

[27] W. Q. Song, P. Beggs and M. Easton, Mater. Design. 30 (2009) 642-648. http://dx.doi.org/10.1016/j.matdes.2008.05.050

[28] Mtex Software, R. Hielscher, TU Chemnitz, Germany.

[29] I. J. Polmear, Light Alloys, Edward Arnold, London, UK, 1989, p. 190.

[30] J. W. Christian and S. Mahajan. Prog. Mater. Sci. 39 (1995) 1. http://dx.doi.org/10.1016/0079-6425(94)00007-7

Downloads

Published

2012-10-30

How to Cite

Dudamell, N. V., Gálvez, F., & Pérez-Prado, M. T. (2012). Dynamic deformation of high pressure die-cast magnesium alloys. Revista De Metalurgia, 48(5), 351–357. https://doi.org/10.3989/revmetalm.1201

Issue

Section

Articles