Fabrication and characterisation of porous Ti and Ti6Al4V produced by sintering with spacer

Authors

  • C. Tojal Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia (UPV)
  • V. Amigó Instituto de Tecnología de Materiales, Universidad Politécnica de Valencia (UPV)
  • J. A. Calero Aleaciones Metálicas Sinterizadas (AMES)

DOI:

https://doi.org/10.3989/revmetalm.1206

Keywords:

Porous titanium, Stiffness, Space-holder method, Ammonium bicarbonate, Particle size, Bending test

Abstract


Titanium is well-known to be a biocompatible material with good corrosion properties and good strength, taking into account their low specific weight. In powder metallurgy field, titanium has been used in order to obtain porosity materials for biomedical applications. Recently, porous materials have been investigated for their use like hips implants. The principal reason is based on a reduction of stiffness implants, minimizing effects of stress shielding. The purpose of the present work is produced porous materials by space holder technique using ammonium bicarbonate like spacer. Scaffolds of titanium have been fabricated by powders of titanium with different grades of particle size and compacting pressure. Before sintering, stability of green parts has been studied by mechanical test. After sintering, porosity has been evaluated besides mechanical properties and elastic modulus by three points bending test. The microstructural characterisation is performed by optical and electron microscopy.

Downloads

Download data is not yet available.

References

[1] I. Montealegre-Meléndez, E. Neubauer y H. Danninger, Powder Metall. 52 (2009) 322-328. http://dx.doi.org/10.1179/174329009X457117

[2] E. Benavente-Martínez, F. Devesa y V. Amigó, Rev. Metal. Madrid 46 (Nº extra) (2010) 19-25.

[3] M. Eriksson, M. Andersson, E. Adolfsson y E. Carlstrom, Powder Metall. 49 (2006) 70-77. http://dx.doi.org/10.1179/174329006X94591

[4] H. Schiefer, M. Bram, H.P. Buchkremer y D. Stover, J. Mater. Sci. Mater. Med. 20 (2009) 1.763-1.770. http://dx.doi.org/10.1007/s10856-009-3733-1 PMid:19322643

[5] V. Amigó, M.D. Salvador, F. Romero, C. Solves y J.F. Moreno, J. Mater. Process. Tech. 141 (2003) 117-122. http://dx.doi.org/10.1016/S0924-0136(03)00243-7

[6] H.D. Kunze, Metal Powder Report 50 (1995) 36.

[7] G. Ryan, A. Pandit y D.P. Apatsidis, Biomaterials 27 (2006) 2.651-2.670.

[8] Z. Esen y S. Bor, Scripta Mater. 56 (2007) 341-344. http://dx.doi.org/10.1016/j.scriptamat.2006.11.010

[9] C. Aparicio, F. J. Gil, A. Padrós, C. Peraire y J. A. Planell, Rev. Metal. Madrid 34 (Nº. extra) (1998) 184-189.

[10] I.M. Robertson y G.B. Schaffer, Powder Metall. 53 (2010) 27-33. http://dx.doi.org/10.1179/003258909X12502872942534

[11] C.F. Li, Z.G. Zhu y T. Liu, Powder Metall. 48 (2005) 237-240. http://dx.doi.org/10.1179/174329005X64162

[12] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino y T. Asahina, Scripta Mater. 45 (2001) 1.147-1.153. http://dx.doi.org/10.1016/S1359-6462(01)00981-2

[13] M.V. Oliveira, A.C. Moreira, C.R. Appoloni, R.T. Lopes, L.C. Pereira y C.A.A. Cairo, Mater. Sci. Forum 530-531 (2006) 22-28. http://dx.doi.org/10.4028/www.scientific.net/MSF.530-531.22

[14] C.R.F. Azevedo, D. Rodrigues y F. Beneduce, J. Alloy. Compd. 353 (2003) 217-227. http://dx.doi.org/10.1016/S0925-8388(02)01297-5

[15] P.G. Esteban, L. Bolzoni, E.M. Ruiz-Navas y E. Gordo, Rev. Metal. Madrid 47 (2011) 169-187. http://dx.doi.org/10.3989/revmetalmadrid.0943

[16] V. Amigó, L. Reig, D.J. Busquets, J.L. Ortiz y J.A. Calero, Powder Metall. 54 (2011) 67-70. http://dx.doi.org/10.1179/174329009X409697

[17] L. Reig, V. Amigó, D. Busquets y J.A. Calero, Powder Metall. 54 (2011) 389-392. http://dx.doi.org/10.1179/003258910X12707304455068

[18] M. Bram, H. Schiefer, D. Bogdanski, M. Köller, H.P. Buchkremer y D. Stöver, Metal Powder Report 61 (2006) 26-31. http://dx.doi.org/10.1016/S0026-0657(06)70603-8

[19] X. Zhao, H. Sun, L. Lan, J. Huang, H. Zhang y Y. Wang, Mater. Lett. 63 (2009) 2.402–2.404.

[20] R.M. German, Powder Metallurgy and Particulate Materials Processing, Metal Powder Industries Federation, New Jersey, USA, 2005, pp.121-260.

[21] C. Tojal, J. Devaud, V. Amigó y J.A. Calero, Rev. Metal. Madrid 46 (Nº extra) (2010) 26-32.

[22] L.J. Gibson y M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, UK, 1997, pp. 175-231.

[23] R.M. German, Powder Metallurgy Science, 2nd ed., Metal Powder Industries Federation, New Jersey, USA, 1994, pp.241-299. PMid:7920739

[24] R.M. German, G.L. Messing y R. G. Cornwall, Sintering Technology, Marcel Dekker inc., New York, USA, 1996, pp. 349-430.

[25] C. Leyens y M. Peters, Titanium and Titanium Alloys. Fundamentals and Applications, ed.Wiley VchGmbh&Co., Weinheim, Alemania, 2003, pp. 423-424.

Downloads

Published

2013-02-28

How to Cite

Tojal, C., Amigó, V., & Calero, J. A. (2013). Fabrication and characterisation of porous Ti and Ti6Al4V produced by sintering with spacer. Revista De Metalurgia, 49(1), 20–30. https://doi.org/10.3989/revmetalm.1206

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>