Mathematical model of heat transfer to predict distribution of hardness through the Jominy bar

Authors

  • E. López Facultad de Química, Universidad Nacional Autónoma de México
  • J. B. Hernández Facultad de Química, Universidad Nacional Autónoma de México
  • G. Solorio Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo
  • H. J. Vergara Instituto Tecnológico de Morelia
  • O. Vázquez Facultad de Química, Universidad Nacional Autónoma de México
  • P. Garnica Instituto Tecnológico de Morelia

DOI:

https://doi.org/10.3989/revmetalm.1233

Keywords:

Jominy test, Numerical simulation, Inverse heat conduction problem, AISI 4140, Finite difference method

Abstract


The heat transfer coefficient was estimated at the bottom surface at Jominy bar end quench specimen by solution of the heat inverse conduction problem. A mathematical model based on the finite-difference method was developed to predict thermal paths and volume fraction of transformed phases. The mathematical model was codified in the commercial package Microsoft Visual Basic v. 6. The calculated thermal path and final phase distribution were used to evaluate the hardness distribution along the AISI 4140 Jominy bar.

Downloads

Download data is not yet available.

References

[1] ASTMA255-10. Standard Tests Methods for Determining Hardenability of Steel. Annual Book of ASTM Standards, 2010.

[2] B. Smoljan, J. Mater. Process. Tech. 175 (2006) 393-397. http://dx.doi.org/10.1016/j.jmatprotec.2005.04.068

[3] B. Smoljan, S. Smokvina Hanza, N. Tomaši, y D. Iljki, J. Achiev. Mater. Manufact. Engineer. 24 (2007) 275-282.

[4] D. Hömberg, Acta Mater. 41 (1996) 4.375- 4.385.

[5] M.V. Li, D.V. Niebuhr, L. Meekisho y D.G. Atteridge, Metall. Mater. Trans. B 29B (1998) 661-670. http://dx.doi.org/10.1007/s11663-998-0101-3

[6] M. Eshraghi Kakhki, A. Kermanpur y M.A. Golozar, Model. Simul. Mater. Sc. Eng. 17 (2009) 045007 . http://dx.doi.org/10.1088/0965-0393/17/4/045007

[7] S.G. Chen, Cheng-I Weng, y J. Lin, J. Mater. Process. Tech. 86 (1999) 257-263. http://dx.doi.org/10.1016/S0924-0136(98)00322-7

[8] B. Hernández-Morales, A. Ingalls-Cruz, J.A. Barrera-Godinez y R. Colás, Proceedings of the 20th ASM, Heat Treating Society Conference, St. Louis, MO, 9-12 Octubre 2000, pp. 719- 726.

[9] P. Le Masson, T. Loulou, E. Artioukhine, P. Rogeon, D. Carron, y J.J. Quemener, Int. J. Therm. Sci. 41 (2002) 517-527. http://dx.doi.org/10.1016/S1290-0729(02)01345-5

[10] M. Narazaki, M. Kogawara, A. Shirayori y S. Fuchiza, 4th International Conference on Quenching and Control of Distortion, Beijing, China, Noviembre 2003, pp. 97-104.

[11] A. Zehtab Yazdi, S.A. Sajjadi, S.M. Zebarjad y S.M. Moosavi Nezhad, J. Mater. Process. Tech. 199 (2008) 124-129.

[12] B.V. Karlekar y R.M. Desmons, Transferencia de Calor, Ed. Mc Graw-Hill, 1985.

[13] E.B. Hawbolt, B. Chau y J.K. Brimacombe, Metall. Trans. A 14 (1983) 1.803-1.815.

[14] P.R. Woodard, S. Chandrasekar y H.T.Y. Yang, Metall. Mater. Trans. B 30 (1999) 815- 822.

Downloads

Published

2013-04-30

How to Cite

López, E., Hernández, J. B., Solorio, G., Vergara, H. J., Vázquez, O., & Garnica, P. (2013). Mathematical model of heat transfer to predict distribution of hardness through the Jominy bar. Revista De Metalurgia, 49(2), 111–121. https://doi.org/10.3989/revmetalm.1233

Issue

Section

Articles