Study of the influence of Cu and Ni on the kinetics of strain-induced martensite in austempered ductile cast iron

Authors

  • D. Guzmán Universidad de Atacama, Dpto. de Metalurgia y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT)
  • L. Navea Universidad de Atacama, Dpto. de Metalurgia y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT)
  • J. Garín Universidad de Santiago de Chile, Dpto. de Ingeniería Metalúrgica
  • C. Aguilar Universidad Técnica Federico Santa María, Dpto. de Ingeniería Metalúrgica y de Materiales
  • A. Guzmán Universidad de Santiago de Chile, Dpto. de Ingeniería Metalúrgica

DOI:

https://doi.org/10.3989/revmetalm.1236

Keywords:

Austempered ductile cast iron, Kinetics of strain-induced martensite, X-ray diffraction

Abstract


The objective of this work was to study the influence of copper and nickel on the kinetics of strain-induced martensite in austempered ductile cast iron. The austempered ductile cast irons were obtained from two ductile cast irons with different copper and nickel contents by means of austempering treatment. The deformation was carried out using a rolling mill. The quantification of the phases was obtained by means of X ray diffraction, while the microstructural characterization was carried out using optical and scanning electron microscopy. It was proved that the kinetics of strain-induced martensite in austempered ductile cast iron can be modeled using the equations proposed by Olson- Cohen and Chang et al. Based on the results obtained from these analyses, it is possible to conclude that the nickel and copper complicate the martensite transformation because these elements increase the staking fault energy of the austenite and its thermodynamic stability.

Downloads

Download data is not yet available.

References

[1] Y. Kim, H. Shin, H. Park y J. Lim, Mater. Lett. 62 (2008) 357-360. http://dx.doi.org/10.1016/j.matlet.2007.05.028

[2] J. Aranzábal, I. Gutiérrez, J.M. Rodriguez y J.J. Urcola, J. Mater. Sci. Technol. 8 (1992) 263- 273. http://dx.doi.org/10.1179/026708392790170568

[3] T. Tun y K. Lwin, Journal of Metals, Materials and Minerals 18 (2008) 199-205.

[4] J.L. Garin y R.L. Mannheim, J. Mater. Process. Technol. 143-144 (2003) 347-351. http://dx.doi.org/10.1016/S0924-0136(03)00452-7

[5] D.J. Moore, T.N. Rouns y K.B. Rundamm, J. Heat Treat. 4 (1985) 7-24. http://dx.doi.org/10.1007/BF02835485

[6] S. Daber y P. Rao, J. Mater. Sci. 43 (2008) 357- 367. http://dx.doi.org/10.1007/s10853-007-2258-6

[7] J.R. Davis, ASM Specialty Handbook: Cast Irons, ASM International, EE.UU., 1996, pp. 192-204.

[8] T. Rouns y K. Rundman, AFS Transactions 95 (1987) 851-874.

[9] D. Rousière y J. Aranzabal, Metallurgical Science and Technology 18 (2000) 24-29.

[10] B. Kovacs, World conference on Austempered Ductile Iron, Chicago, EE.UU., 1991, pp. 241- 270.

[11] C. Hsu y K. Lin, Mat. Sci. Eng. A 528 (2011) 5.706-5.712.

[12] O. Eri´c, D. Rajnovic, S. Zec, L. Sidjanin y M. Jovanovi´c, Mater. Charact. 57 (2006) 211- 217. http://dx.doi.org/10.1016/j.matchar.2006.01.014

[13] O. Eri´c, D. Rajnovi´c, L. Sidjanin, S. Zec y M. Jovanovi´c, J. Serb. Chem. Soc. 70 (2005) 1.015- 1.022. http://dx.doi.org/10.2298/JSC0507015E

[14] J. Yang y S. Putatunda, Mat. Sci. Eng. A 406 (2005) 217-228. http://dx.doi.org/10.1016/j.msea.2005.06.036

[15] P. Shanmugam, P. Prasad, K. Udupa y N. Venkataraman, J. Mater. Sci. 29 (1994) 4.933- 4.940. http://dx.doi.org/10.1007/BF00356546

[16] M. Bahmani y R. Elliott, J. Mater. Sci. 32 (1997) 5.383-5.388.

[17] Qit-Fer et Titane Inc, Ductile iron data for design engineers, Rio Tinto & Titanium Inc., Canada, 1990, p. 26.

[18] J. Zimba, D.J. Simbi y E. Navara, Cement Concrete Comp. 25 (2003) 643-649. http://dx.doi.org/10.1016/S0958-9465(02)00078-1

[19] H. Shih, T. Ha y Y. Chang, Scripta Mater. 45 (2001) 823-829. http://dx.doi.org/10.1016/S1359-6462(01)01101-0

[20] S. Chatterjee y H. Bhadeshia, Mater. Sci. Tech. 22 (2006) 645-649. http://dx.doi.org/10.1179/174328406X86182

[21] G. Olson y M. Cohen, Metall. Mater.Trans. A, 6 (1975) 791-795. http://dx.doi.org/10.1007/BF02672301

[22] ASM Handbook, Metallography and Microstructures, Vol 9. ASM International, EE. UU., 1992.

[23] G.I. Silman, V.V. Kamynin y A.A. Tarasov, Met. Sci. Heat Treat. 45 (2003) 254-258. http://dx.doi.org/10.1023/A:1027320116132

[24] R.A. Gonzaga, P. Martínez, A. Pérez y P. Villanueva, Journal of Achievements in Materials and Manufacturing Engineering 33 (2009) 150-158.

[25] A. Dumay, J.P. Chateau, S. Allain, S. Migot y O. Bouaziz, Mat. Sci. Eng. A 483-484 (2008) 184-187. http://dx.doi.org/10.1016/j.msea.2006.12.170

[26] J. Liu, P. Han, M. Dong, G. Fan, G. Qiao y J. Yang, Physica B 407(2012) 891-895. http://dx.doi.org/10.1016/j.physb.2011.12.111

Downloads

Published

2013-06-30

How to Cite

Guzmán, D., Navea, L., Garín, J., Aguilar, C., & Guzmán, A. (2013). Study of the influence of Cu and Ni on the kinetics of strain-induced martensite in austempered ductile cast iron. Revista De Metalurgia, 49(3), 213–222. https://doi.org/10.3989/revmetalm.1236

Issue

Section

Articles

Most read articles by the same author(s)