Effect of the polyacrylamide concentration on the quality of the copper deposit obtained by electrolytic refining

Authors

  • J. Aragón Facultad de Ingeniería y Arquitectura, Universidad Arturo Prat
  • J. Ipinza Facultad de Ingeniería, Universidad Técnica Federico Santa María
  • J. Camus Facultad de Ciencias, Universidad de Playa Ancha
  • A. Vargas Facultad de Ingeniería y Arquitectura, Universidad Arturo Prat
  • R. Saavedra Facultad de Ingeniería y Arquitectura, Universidad Arturo Prat

DOI:

https://doi.org/10.3989/revmetalm.1327

Keywords:

Copper cathodes, Polyacrylamide, Grain size, Grain refining

Abstract


The effect of the additive non ionic polyacrylamide (PAM), was studied at the laboratory level, as refining crystalline grain in the copper electrorefining. Experiments were performed 24 h of electrolysis, using an electrolyte of copper sulphate acid, with 0.5 to 10 mgl-1 polyacrylamide at 55 °C and a current density of 260 Am-2. The effectiveness of these organic additives in copper electrorefining was determined by directly measuring the surface roughness of the copper deposit and contrasted with the results of other instrumental techniques (SEM and metallographic analysis). The results of the analysis SEM, metallographic analysis and measurement of the surface roughness of the copper deposit, show that to concentrations as low as 0.5 mgl-1 of this additive is manifested its property of tuner of grain. However, in the range of 7 to 10 mgl-1 of polyacrylamide, it reaches an optimum size of grain for the deposit of copper in the cathodes.

Downloads

Download data is not yet available.

References

[1] T.O' Keefe, Application of Polarisation Measurements in the Control of Metal Deposition, I.H. Warren (Ed.), Elsevier Science Publishers, Amesterdam, Holanda, 1984, pp. 15-31.

[2] S. Afifi, A. Elsayed y A. Elsherief, JOM 39 (1987) 38-41. http://dx.doi.org/10.1007/BF03259469

[3] Z. Mubarok, I. Filzwieser y P. Pashen, Proceeding/EMC 2005, Dresden, Alemania, 2005, pp. 109-122.

[4] R. Winand, Application of Polarisation Measurements in the Control of Metal Deposition, I. H. Warren (Ed.), Elsevier, Amsterdam, Holanda, 1984, pp. 47-83.

[5] P. Stanke, Procs. COPPER'99, Vol. III, Electrorefining & Electrowinning, Minerals, Metals, and Materials Society (Eds.), Phoenix, Arizona, EE.UU., 1999, pp. 643-651.

[6] M. Minakshi y M. Nicol, Proc. Hydrocopper 2009, E. Domic y J. Casas (Eds.), Antofagasta, Chile, 2009, pp. 382-391.

[7] L. Muresan, S. Varvara, G. Maurin y S. Dorneanu, Hydrometallurgy 2-3 (2000) 161-169. http://dx.doi.org/10.1016/S0304-386X(99)00063-8

[8] R. Yu, Q. Liu, G. Qiu, Z. Fang, J. Tan y P. Yang, T. Nonferr. Metal. Soc. 5 (2008) 1.280-1.284.

[9] G. Hope y G. Brown, Proc. 189th ECS Meeting, Symp., R. Ruoff y K. Kadish (Eds), Los Angeles, EE.UU., 1996, p. 1.097.

[10] S. Sandoval, C. Morales y C. Bernu, Proc. SME Annual Meeting and Exhibit 2010, Arizona, EE.UU., 2010, p. 540.

[11] Great Process Ltda. Regulador de grano DXG-F7, Ficha Técnica, www.gprocess.cl, Antofagasta, Chile.

[12] J. Vereecken y R. Winand, Surf. Technol. 4 (1976) 227-235. http://dx.doi.org/10.1016/0376-4583(76)90035-2

[13] C. Fabian, M. Ridd y M. Sheehan, Hydrometallurgy 1-2 (2007) 44-55. http://dx.doi.org/10.1016/j.hydromet.2006.11.002

[14] C. Fabian, M. Ridd y M. Sheehan, Hydrometallurgy 3-4 (2006) 256-263. http://dx.doi.org/10.1016/j.hydromet.2006.08.001

[15] H. Fischer, Plat. Surf. Finish. 56 (1969) 1.229-1.233.

Downloads

Published

2013-12-30

How to Cite

Aragón, J., Ipinza, J., Camus, J., Vargas, A., & Saavedra, R. (2013). Effect of the polyacrylamide concentration on the quality of the copper deposit obtained by electrolytic refining. Revista De Metalurgia, 49(6), 449–457. https://doi.org/10.3989/revmetalm.1327

Issue

Section

Articles