Revista de Metalurgia, Vol 50, No 2 (2014)
Molienda asistida con microondas de un coque metalúrgico
https://doi.org/10.3989/revmetalm.013
Esteban Ruisánchez
Grupo de Microondas y Carbones para Aplicaciones Tecnológicas. Instituto Nacional del Carbón (INCAR), CSIC, España
Emilio J. Juárez-Pérez
Grupo de Microondas y Carbones para Aplicaciones Tecnológicas. Instituto Nacional del Carbón (INCAR), CSIC, España
Ana Arenillas
Grupo de Microondas y Carbones para Aplicaciones Tecnológicas. Instituto Nacional del Carbón (INCAR), CSIC, España
José M. Bermúdez
Grupo de Microondas y Carbones para Aplicaciones Tecnológicas. Instituto Nacional del Carbón (INCAR), CSIC, España
José Ángel Menéndez
Grupo de Microondas y Carbones para Aplicaciones Tecnológicas. Instituto Nacional del Carbón (INCAR), CSIC, España
Resumen
Palabras clave
Referencias
Babich, A., Yaroshevskii, S., Garc.a, L., Formoso, A., Cores, A., Isidro, A., Ferreira, S. (1996). Technological improvements in the pulverized coal injection process in the blast furnace. Rev. Metal. 32 (2), 103–116. http://dx.doi.org/10.3989/revmetalm.1996.v32.i2.921
Chenje, T.W., Simbi, D.J., Navara, E. (2003). Wear performance and cost effectiveness - A criterion for the selection of grinding media for wet milling in mineral processing operations. Miner. Eng. 16 (12), 1387–1390. http://dx.doi.org/10.1016/j.mineng.2003.08.009
Chenje, T.W., Simbi, D.J., Navara, E. (2004). Relationship between microstructure, hardness, impact toughness and wear performance of selected grinding media for mineral ore milling operations. Mater. Des. 25 (1), 11–18. http://dx.doi.org/10.1016/S0261-3069(03)00168-7
Church, R.H., Webb, W.E., Salsman, J.B. (1988). Dielectric properties of low-loss minerals. U. S. Bureau of Mines. Report of Investigations. Report 9194.
Didenko, A.N., Zverev, B.V., Prokopenko, A.V. (2005). Microwave fracturing and grinding of solid rocks by example of kimberlite. Doklady Physics 50 (7), 349–350. http://dx.doi.org/10.1134/1.2005358
Fitzgibbon, K.E., Veasey, T.J. (1990). Thermally assisted liberation - a review. Miner. Eng. 3 (1–2), 181–185. http://dx.doi.org/10.1016/0892-6875(90)90090-X
Güng.r, A., Atalay, .. (1998). Microwave processing and grindability. Innovations in Mineral and Coal Processing. Innovations in Mineral and Coal Processing: Proceedings of the 7th International Mineral Processing Symposium, Istanbul, 13–16.
Hearson, H.R. (1922). The Manufacture of Iron and Steel; E & F. N. Spon Ltd., London, UK.
Holman, B.W. (1926). Heat treatment as an agent in rock breaking. Trans. Inst. Min. Metall. 36, 219–234.
Kingman, S.W., Rowson, N.A. (1998). Microwave treatment of minerals - a review. Miner. Eng. 11 (11), 1081–1087. http://dx.doi.org/10.1016/S0892-6875(98)00094-6
Kingman, S.W., Vorster, W., Rowson, N.A. (2000). The influence of mineralogy on microwave assisted grinding. Miner. Eng. 13 (3), 313–327. http://dx.doi.org/10.1016/S0892-6875(00)00010-8
Kingman, S.W., Jackson, K., Cumbane, A., Bradshaw, S.M., Rowson, N.A., Greenwood, R. (2004). Recent developments in microwave assisted comminution. Int. J. Miner. Process. 74 (1–4), 71–83. http://dx.doi.org/10.1016/j.minpro.2003.09.006
Krestou, A., Panias, D. (2004). 1st International Conference on Advances in Mineral Resources Management and Environmental Geotechnology Hania, Greece, 215–220.
Lester, E., Kingman, S. (2004). The effect of microwave preheating on five different coals. Fuel 83 (14–15), 1941–1947. http://dx.doi.org/10.1016/j.fuel.2004.05.006
Lester, E., Kingman, S., Dodds, C. (2005). Increased coal grindability as a result of microwave pretreatment at economic energy inputs. Fuel 84 (4), 423–427. http://dx.doi.org/10.1016/j.fuel.2004.09.019
Lester, E., Kingman, S., Dodds, C., Patrick, J. (2006). The potential for rapid coke making using microwave energy. Fuel 85 (14–15), 2057–2063. http://dx.doi.org/10.1016/j.fuel.2006.04.012
Marland, S., Han, B., Merchant, A., Rowson, N. (2000). The effect of microwave radiation on coal grindability. Fuel 79 (11), 1283–1288. http://dx.doi.org/10.1016/S0016-2361(99)00285-9
Menéndez, J.A., Arenillas, A., Fidalgo, B., Fern.ndez, Y., Zubizarreta, L., Calvo, E.G., Berm.dez, J.M. (2010). Microwave heating processes involving carbon materials. Fuel Process. Technol. 91 (1), 1–8. http://dx.doi.org/10.1016/j.fuproc.2009.08.021
Mular, A.L., Bhappu, R.B. (1982). Dise-o de plantas de proceso de minerales, Madrid.
Schubert, U.S., Hoogenboom, R., Wilms, T.F.A., Erdmenger, T. (2009). Microwave-assisted chemistry: a closer look at heating efficiency. Aust. J. Chem. 62 (3), 236–243. http://dx.doi.org/10.1071/CH08503
Stoltze, S. (2000). The use of pet coke in cement manufacturing plants: Presentation of industrial cases of grinding and firing of pet coke. 11th International Cement Conference Hammamet, Tunisie, 9.
Wills, B.A., Napier-Munn, T. (2006). Wills mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann, 2006.
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.
Contacte con la revista revmetal@cenim.csic.es
Soporte técnico soporte.tecnico.revistas@csic.es