Interaction of inorganic and organic compounds of physiological fluids with thermally treated Ti surfaces

Authors

  • Laura Burgos-Asperilla Department of Applied Physical Chemistry. Universidad Autónoma de Madrid
  • Miriam Gamero Department of Applied Physical Chemistry. Universidad Autónoma de Madrid
  • Mª. Lorenza Escudero Department of Materials Engineering, Degradation and Durability. National Centre for Metallurgical Research (CENIM). CSIC
  • Concepción Alonso Department of Applied Physical Chemistry. Universidad Autónoma de Madrid
  • Mª. Cristina García-Alonso Department of Materials Engineering, Degradation and Durability. National Centre for Metallurgical Research (CENIM). CSIC

DOI:

https://doi.org/10.3989/revmetalm.022

Keywords:

Bovine serum albumin, Calcium phosphate, Corrosion, Foetal bovine serum, Titanium, XPS

Abstract


The study of the interaction between the thermally treated Ti (TT-Ti) at 277 °C for 5 hours and the body fluids, ranging from the simplest to the most complex solution is analysed. Electrochemical techniques such as the measurement of the corrosion potential, electrochemical impedance spectroscopy and the polarization curves have been used. The characterization of TT-Ti has been performed by scanning electron microscopy, atomic force microscopy and X-ray Photoelectron Spectroscopy (XPS). The XPS reveals that the peak intensity associated with phosphate and calcium increases as immersion time does. However, the albumin covers rapidly the surface since the C peak intensity remains constant from the first day to the end of immersion time. The calcium ions have a bridging effect on the electrostatic adsorption of phosphate ions as well as that of albumin and the acidic hydroxyl groups of the oxide layer. The impedance measurement shows that the resistance of the oxide layer immersed in albumin and foetal bovine serum decrease probably due to the formation of organometallic complex. The polarization curves reveal that the presence of proteins decreases the current of anodic branch indicating that the proteins work as a barrier on the surface.

Downloads

Download data is not yet available.

References

Albrektsson, T., Johansson, C., Sennerby, L. (1994). Biological aspects of implant dentistry: osseointegration. Periodontology 2000 4 (1), 58–73. http://dx.doi.org/10.1111/j.1600-0757.1994.tb00006.x

Alonso, C., García-Alonso, M.C., Escudero, M.L. (2008). Patent N° 200801041, Célula electrolítica para estudio de la interfase formada por un implante metálico en medio celular y procedimiento de utilización de dicha célula electrolítica, Espa-a.

Bello-Samir, A., de Jesús-Maldonado, I., Rosim-Fachini, E., Sundaram-Paul A., Diffoot-Carlo, N. (2010). In vitro evaluation of human osteoblast adhesion to a thermally oxidized γ-TiAl intermetallic alloy of composition Ti–48Al–2Cr–2Nb (at.%). J. Mater. Sci.: Mater. Med. 21 (5), 1739–1750. http://dx.doi.org/10.1007/s10856-010-4016-6 PMid:20162332 PMCid:PMC2871339

Browne, M., Gregson, P.J. (1994). Surface modification of Titanium alloy implants. Biomaterials 15 (11), 894–898. http://dx.doi.org/10.1016/0142-9612(94)90113-9

Burgos-Asperilla, L., García-Alonso, M.C., Escudero, M.L., Alonso, C. (2010). Study of the interaction of inorganic and organic compounds of the body fluids with Ti surface. Acta Biomater. 6 (2), 652–661. http://dx.doi.org/10.1016/j.actbio.2009.06.019 PMid:19539064

Carboneras, M., Iglesias, C., Pérez-Maceda, B.T., del Valle, J.A, García-Alonso, M.C., Alobera, M.A., Clemente, C., Rubio, J.C., Escudero, M.L., Lozano, R.M. (2011). Comportamiento frente a la corrosión y biocompatibilidad in vitro/in vivo de la aleación AZ31 modificada superficialmente. Rev. Metal. 47 (3), 212–223. http://dx.doi.org/10.3989/revmetalm.1065

Clark, P., Connolly, P., Curtis, A.S.G., Dow, J.A.T., Wilkinson, C.D.W. (1991). Cell guidance by ultrafine topography in vitro. J. Cell. Sci. 99, 73–77. PMid:1757503

Contu, F., Elsener, B., Böhni, H. (2002). Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I. Mechanically polished samples. J. Biomed. Mater. Res. 62 (3), 412–421. http://dx.doi.org/10.1002/jbm.10329 PMid:12209927

Curtis, A.S.G., Varde, M. (1964). Control of Cell Behavior: Topological Factors. J. Natl. Cancer Inst. 33 (1), 15–26. PMid:14202300

Dalby, M.J., Riehle, M.O., Johnstone, H., Affrossman, S.,Curtis, A.S.G. (2004). Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell. Biol. Int. 28 (3), 229–236. http://dx.doi.org/10.1016/j.cellbi.2003.12.004 PMid:14984750

Den Braber, E.T., de Ruijter, J.E., Ginsel, L.A., von Recum, A.F., Jansen, J.A. (1996). Quantitative analysis of fibroblast morphology on microgrooved surfaces with various groove and ridge dimension. Biomaterials 17 (21), 2037–2044. http://dx.doi.org/10.1016/0142-9612(96)00032-4

Ducheyne, P., Healy, K.E. (1991). Titanium: Immersion-induced surface chemistry changes and the relationship to passive dissolution and bioactivity in The Bone–Biomaterial Interface, Davies, J.E. (Ed), University of Toronto Press, pp. 62–67.

Ellingsen, J.E. (1991). A study on the mechanism of protein adsorption to Ti02. Biomaterials 12 (6), 593–596. http://dx.doi.org/10.1016/0142-9612(91)90057-H

Escudero, M.L., Mu-oz-Morris, M.A., García-Alonso, M.C., Fernández-Escalante, E. (2004). In vitro evaluation of γ-TiAl intermetallic for potential endoprothesis applications. Intermetallics 12 (3), 253–260. http://dx.doi.org/10.1016/j.intermet.2003.10.004

García-Alonso, M.C., Saldana, L., Valles, G., González-Carrasco, J.L., González-Cabrero, J., Martínez, M.E., Gil-Garay, E., Munuera, L. (2003). In vitro corrosion behaviour and osteoblast response to thermally oxidized Ti6Al4V alloy. Biomaterials 24 (1), 19–26. http://dx.doi.org/10.1016/S0142-9612(02)00237-5

Hanawa, T., Ota, M. (1991). Calcium-phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12 (8), 767–774. http://dx.doi.org/10.1016/0142-9612(91)90028-9

Healy, K.E., Ducheyne, P. (1992). Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 13 (8), 553–561. http://dx.doi.org/10.1016/0142-9612(92)90108-Z

Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J., Baro, A.M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705. http://dx.doi.org/10.1063/1.2432410 PMid:17503926

Hughes-Wassell, D.T., Embery, G. (1996). Adsorption of bovine serum albumin on to titanium powder. Biomaterials 17 (9), 859–864. http://dx.doi.org/10.1016/0142-9612(96)83280-7

Hwang, K.S., Lee, Y.H., Kang, B.A., Kim, S.B., Oh, J.S. (2003). Effect of annealing titanium on in vitro bioactivity. J. Mater. Sci. - Mater. M. 14 (6), 521–529. http://dx.doi.org/10.1023/A:1023408030405

Jones D.B. (1998). Cells and Metals in Metals as biomaterials, Helsen, J.A, Breme H.J. (Ed.) Wiley, J., & Sons, Chichester, England, pp. 317–335.

Kasemo, B. (2002). Biological surface science. Surf. Sci. 500, 656–677. http://dx.doi.org/10.1016/S0039-6028(01)01809-X

Kubo, K., Tsukimura, N., Iwasa, F., Ueno, T., Saruwatari, L., Aita, H., Chiou, W.A., Ogawa, T. (2009). Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 30 (29), 5319–5329. http://dx.doi.org/10.1016/j.biomaterials.2009.06.021 PMid:19589591

Lima, J., Sousa, S.R., Ferreira, A., Barbosa, M.A. (2001). Interactions between calcium, phosphate, and albumin on the surface of titanium. J. Biomed. Mater. Res. 55 (1), 45–53. http://dx.doi.org/10.1002/1097-4636(200104)55:1<45::AID-JBM70>3.0.CO;2-0

Lin, D., Li, Q., Li, W., Ichim, I., Swain, M. (2007). Damage Evaluation of Bone Tissues with Dental Implants. Advances in Fracture and Damage Mechanics VI, 905–908.

Lord, M.S., Foss, M., Besenbacher, F. (2010). Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5 (1), 66–78. http://dx.doi.org/10.1016/j.nantod.2010.01.001

Lu, G., Bernasek, S.L., Schwartz, J. (2000). Oxidation of a polycrystalline titanium surface by oxygen and water. Surf. Sci. 458 (1–3), 80–90. http://dx.doi.org/10.1016/S0039-6028(00)00420-9

Mantel, M., Wightman, J.P. (1994). Influence of the surfacechemistry on the wettability of stainless-steel. Surf. Interface Anal. 21 (9), 595–605. http://dx.doi.org/10.1002/sia.740210902

Mareci, D., Lucero, V., Mirza, J. (2009). Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media. Rev. Metal. 45, 32–41. http://dx.doi.org/10.3989/revmetalm.0750

McCafferty, E., Wightman, J.P. (1999). An X-Ray photoelectron spectroscopy sputter profile study of the native air-formed film on titanium. Appl. Surf. Sci. 143 (1–4), 92–100. http://dx.doi.org/10.1016/S0169-4332(98)00927-1

Mu-oz, A.I., Mischler, S. (2007). Interactive Effects of Albumin and Phosphate Ions on the Corrosion of CoCrMo Implant Alloy. J. Electrochem. Soc. 154 (10), C562–570. http://dx.doi.org/10.1149/1.2764238

Ouerd, A., Alemany-Dumont, C., Belthome, G., Normand, B., Szunerits, S. (2007). Reactivity of titanium in physiological medium: electrochemical characterization of the metal/ protein interface. J. Electrochem. Soc. 154 (10), C593–C601. http://dx.doi.org/10.1149/1.2769819

Ratner, B.D. (2004). Biomaterials Science: an Introduction to Materials in Medicine. 2nd Edition. Elsevier Academic Press (Ed.), Amsterdam, Boston.

Rechendorff, K., Hovgaard, M.B., Foss, M., Zhdanov, V.P., Besenbacher, F. (2006). Enhancement of protein adsorption induced by surface roughness. Langmuir 22 (22), 10885–10888. http://dx.doi.org/10.1021/la0621923 PMid:17154557

Rubio, J.C., García-Alonso, M.C., Alonso, C., Alobera, M.A., Clemente, C., Munuera, L., Escudero, M.L. (2008). Determination of metallic traces in kidneys, livers, lungs and spleens of rats with metallic implants after a long implantation time. J. Mater. Sci. Mater. Med. 19 (1), 369–375. http://dx.doi.org/10.1007/s10856-007-3002-0 PMid:17607514

Saldana, L., Vilaboa, N., Valles, G., González-Cabrero, J., Munuera, L. (2005). Osteoblast response to thermally oxidized Ti6Al4V alloy. J. Biomed. Mater. Res. 73A(1), 97–107. http://dx.doi.org/10.1002/jbm.a.30264 PMid:15704115

Serro, A.P., Fernandes, A.C., Saramago, B., Lima, J., Barbosa, M.A. (1997). Apatite deposition on titanium surfaces-the role of albumin adsorption. Biomaterials 18 (4), 963–968. http://dx.doi.org/10.1016/S0142-9612(97)00031-8

Serro do, A.P.V.A., Fernandes A.C., de Jesus B., Saramago V. (1997). The influence of proteins on calcium phosphate deposition over titanium implants studied by dynamic contact angle analysis and XPS. Colloid. Surface B 10 (2), 95–104. http://dx.doi.org/10.1016/S0927-7765(97)00060-X

Sundgren, J.E., Bodo, P., Lundstrom, I. (1986). Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. J. Colloid Interf. Sci. 110 (1), 9–20. http://dx.doi.org/10.1016/0021-9797(86)90348-6

Uchida, M., Kim, H.M., Kokubo, T., Fujibayashi, S., Nakamura, T. (2003). Structural dependence of apatite formation on titania gels in a simulated body fluids. J. Biomed. Mater. Res. 64A, 164–170. http://dx.doi.org/10.1002/jbm.a.10414 PMid:12483709

Vaquila, I., Passeggi Jr, M.C.G., Ferron, J. (1996). Temperature effect in the early stages of titanium oxidation. Appl. Surf. Sci. 93 (3), 247–253. http://dx.doi.org/10.1016/0169-4332(95)00334-7

Wagner, C.D., Davis, L.E., Zeller, M.V., Taylor, J.A., Raymond, R.H., Gale, L.H. (1981). Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 3 (5), 211–225. http://dx.doi.org/10.1002/sia.740030506

Wagner, C. D., Riggs, W.M., Davis, L.E., Moulder, J.F., Mulinberg, G.E. (1992). Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division (Eds.), Eden Prairie, Minnesota, USA.

Williams, R.L., Brown, S.A., Merritt, K. (1988). Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials 9 (2), 181–186. http://dx.doi.org/10.1016/0142-9612(88)90119-6

Wojciak-Stothard, B., Madeja, Z., Korohoda, W., Curtis, A., Wilkinson, C. (1995). Activation of macrophage-like cells by multiple grooved substrata. Topographical control of cell behavior. Cell Biol. Int. 19 (6), 485–490. http://dx.doi.org/10.1006/cbir.1995.1092 PMid:7640662

Published

2014-09-30

How to Cite

Burgos-Asperilla, L., Gamero, M., Escudero, M. L., Alonso, C., & García-Alonso, M. C. (2014). Interaction of inorganic and organic compounds of physiological fluids with thermally treated Ti surfaces. Revista De Metalurgia, 50(3), e022. https://doi.org/10.3989/revmetalm.022

Issue

Section

Articles

Most read articles by the same author(s)