Revista de Metalurgia, Vol 50, No 3 (2014)

Interacción de compuestos inorgánicos y orgánicos de fluidos fisiológicos con superficies de Ti tratadas térmicamente


https://doi.org/10.3989/revmetalm.022

Laura Burgos-Asperilla
Department of Applied Physical Chemistry. Universidad Autónoma de Madrid, España

Miriam Gamero
Department of Applied Physical Chemistry. Universidad Autónoma de Madrid, España

Mª. Lorenza Escudero
Department of Materials Engineering, Degradation and Durability. National Centre for Metallurgical Research (CENIM). CSIC, España

Concepción Alonso
Department of Applied Physical Chemistry. Universidad Autónoma de Madrid, España

Mª. Cristina García-Alonso
Department of Materials Engineering, Degradation and Durability. National Centre for Metallurgical Research (CENIM). CSIC, España

Resumen


Se estudia la interacción del Ti oxidado a 277 °C durante 5 horas con compuestos orgánicos e inorgánicos presentes en los fluidos fisiológicos, desde la solución más simple a la más compleja. Se han utilizado técnicas electroquímicas como la evolución del potencial de corrosión, espectroscopía de impedancia electroquímica y curvas de polarización, y la espectroscopía de fotoelectrones de rayos X (XPS). El XPS revela que la intensidad de los picos asociados a los iones fosfato y calcio aumenta con el tiempo de inmersión. Sin embargo, la albúmina cubre desde el primer día la superficie, ya que la intensidad de los picos asociados a la presencia de C permanece prácticamente constante hasta el final del ensayo. Los iones calcio actúan como puente de unión entre los iones fosfato y la albúmina, y los grupos hidroxilo ácidos de la capa de óxido. Las medidas de impedancia muestran que la resistencia de la capa de óxido en albúmina y FBS disminuye probablemente debido a la formación de complejos órgano-metálicos. Las curvas de polarización revelan que cuando la solución contiene proteínas, la intensidad de la rama anódica disminuye indicando que las proteínas ejercen un efecto barrera sobre la superficie del Ti.

Palabras clave


Albúmina de suero bovino; Corrosión; Fosfato cálcico; Suero bovino fetal; Titanio; XPS

Texto completo:


HTML PDF XML

Referencias


Albrektsson, T., Johansson, C., Sennerby, L. (1994). Biological aspects of implant dentistry: osseointegration. Periodontology 2000 4 (1), 58–73. http://dx.doi.org/10.1111/j.1600-0757.1994.tb00006.x

Alonso, C., García-Alonso, M.C., Escudero, M.L. (2008). Patent N° 200801041, Célula electrolítica para estudio de la interfase formada por un implante metálico en medio celular y procedimiento de utilización de dicha célula electrolítica, Espa-a.

Bello-Samir, A., de Jesús-Maldonado, I., Rosim-Fachini, E., Sundaram-Paul A., Diffoot-Carlo, N. (2010). In vitro evaluation of human osteoblast adhesion to a thermally oxidized γ-TiAl intermetallic alloy of composition Ti–48Al–2Cr–2Nb (at.%). J. Mater. Sci.: Mater. Med. 21 (5), 1739–1750. http://dx.doi.org/10.1007/s10856-010-4016-6 PMid:20162332 PMCid:PMC2871339

Browne, M., Gregson, P.J. (1994). Surface modification of Titanium alloy implants. Biomaterials 15 (11), 894–898. http://dx.doi.org/10.1016/0142-9612(94)90113-9

Burgos-Asperilla, L., García-Alonso, M.C., Escudero, M.L., Alonso, C. (2010). Study of the interaction of inorganic and organic compounds of the body fluids with Ti surface. Acta Biomater. 6 (2), 652–661. http://dx.doi.org/10.1016/j.actbio.2009.06.019 PMid:19539064

Carboneras, M., Iglesias, C., Pérez-Maceda, B.T., del Valle, J.A, García-Alonso, M.C., Alobera, M.A., Clemente, C., Rubio, J.C., Escudero, M.L., Lozano, R.M. (2011). Comportamiento frente a la corrosión y biocompatibilidad in vitro/in vivo de la aleación AZ31 modificada superficialmente. Rev. Metal. 47 (3), 212–223. http://dx.doi.org/10.3989/revmetalm.1065

Clark, P., Connolly, P., Curtis, A.S.G., Dow, J.A.T., Wilkinson, C.D.W. (1991). Cell guidance by ultrafine topography in vitro. J. Cell. Sci. 99, 73–77. PMid:1757503

Contu, F., Elsener, B., Böhni, H. (2002). Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I. Mechanically polished samples. J. Biomed. Mater. Res. 62 (3), 412–421. http://dx.doi.org/10.1002/jbm.10329 PMid:12209927

Curtis, A.S.G., Varde, M. (1964). Control of Cell Behavior: Topological Factors. J. Natl. Cancer Inst. 33 (1), 15–26. PMid:14202300

Dalby, M.J., Riehle, M.O., Johnstone, H., Affrossman, S.,Curtis, A.S.G. (2004). Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell. Biol. Int. 28 (3), 229–236. http://dx.doi.org/10.1016/j.cellbi.2003.12.004 PMid:14984750

Den Braber, E.T., de Ruijter, J.E., Ginsel, L.A., von Recum, A.F., Jansen, J.A. (1996). Quantitative analysis of fibroblast morphology on microgrooved surfaces with various groove and ridge dimension. Biomaterials 17 (21), 2037–2044. http://dx.doi.org/10.1016/0142-9612(96)00032-4

Ducheyne, P., Healy, K.E. (1991). Titanium: Immersion-induced surface chemistry changes and the relationship to passive dissolution and bioactivity in The Bone–Biomaterial Interface, Davies, J.E. (Ed), University of Toronto Press, pp. 62–67.

Ellingsen, J.E. (1991). A study on the mechanism of protein adsorption to Ti02. Biomaterials 12 (6), 593–596. http://dx.doi.org/10.1016/0142-9612(91)90057-H

Escudero, M.L., Mu-oz-Morris, M.A., García-Alonso, M.C., Fernández-Escalante, E. (2004). In vitro evaluation of γ-TiAl intermetallic for potential endoprothesis applications. Intermetallics 12 (3), 253–260. http://dx.doi.org/10.1016/j.intermet.2003.10.004

García-Alonso, M.C., Saldana, L., Valles, G., González-Carrasco, J.L., González-Cabrero, J., Martínez, M.E., Gil-Garay, E., Munuera, L. (2003). In vitro corrosion behaviour and osteoblast response to thermally oxidized Ti6Al4V alloy. Biomaterials 24 (1), 19–26. http://dx.doi.org/10.1016/S0142-9612(02)00237-5

Hanawa, T., Ota, M. (1991). Calcium-phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12 (8), 767–774. http://dx.doi.org/10.1016/0142-9612(91)90028-9

Healy, K.E., Ducheyne, P. (1992). Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 13 (8), 553–561. http://dx.doi.org/10.1016/0142-9612(92)90108-Z

Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J., Baro, A.M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705. http://dx.doi.org/10.1063/1.2432410 PMid:17503926

Hughes-Wassell, D.T., Embery, G. (1996). Adsorption of bovine serum albumin on to titanium powder. Biomaterials 17 (9), 859–864. http://dx.doi.org/10.1016/0142-9612(96)83280-7

Hwang, K.S., Lee, Y.H., Kang, B.A., Kim, S.B., Oh, J.S. (2003). Effect of annealing titanium on in vitro bioactivity. J. Mater. Sci. - Mater. M. 14 (6), 521–529. http://dx.doi.org/10.1023/A:1023408030405

Jones D.B. (1998). Cells and Metals in Metals as biomaterials, Helsen, J.A, Breme H.J. (Ed.) Wiley, J., & Sons, Chichester, England, pp. 317–335.

Kasemo, B. (2002). Biological surface science. Surf. Sci. 500, 656–677. http://dx.doi.org/10.1016/S0039-6028(01)01809-X

Kubo, K., Tsukimura, N., Iwasa, F., Ueno, T., Saruwatari, L., Aita, H., Chiou, W.A., Ogawa, T. (2009). Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 30 (29), 5319–5329. http://dx.doi.org/10.1016/j.biomaterials.2009.06.021 PMid:19589591

Lima, J., Sousa, S.R., Ferreira, A., Barbosa, M.A. (2001). Interactions between calcium, phosphate, and albumin on the surface of titanium. J. Biomed. Mater. Res. 55 (1), 45–53. http://dx.doi.org/10.1002/1097-4636(200104)55:1<45::AID-JBM70>3.0.CO;2-0

Lin, D., Li, Q., Li, W., Ichim, I., Swain, M. (2007). Damage Evaluation of Bone Tissues with Dental Implants. Advances in Fracture and Damage Mechanics VI, 905–908.

Lord, M.S., Foss, M., Besenbacher, F. (2010). Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5 (1), 66–78. http://dx.doi.org/10.1016/j.nantod.2010.01.001

Lu, G., Bernasek, S.L., Schwartz, J. (2000). Oxidation of a polycrystalline titanium surface by oxygen and water. Surf. Sci. 458 (1–3), 80–90. http://dx.doi.org/10.1016/S0039-6028(00)00420-9

Mantel, M., Wightman, J.P. (1994). Influence of the surfacechemistry on the wettability of stainless-steel. Surf. Interface Anal. 21 (9), 595–605. http://dx.doi.org/10.1002/sia.740210902

Mareci, D., Lucero, V., Mirza, J. (2009). Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media. Rev. Metal. 45, 32–41. http://dx.doi.org/10.3989/revmetalm.0750

McCafferty, E., Wightman, J.P. (1999). An X-Ray photoelectron spectroscopy sputter profile study of the native air-formed film on titanium. Appl. Surf. Sci. 143 (1–4), 92–100. http://dx.doi.org/10.1016/S0169-4332(98)00927-1

Mu-oz, A.I., Mischler, S. (2007). Interactive Effects of Albumin and Phosphate Ions on the Corrosion of CoCrMo Implant Alloy. J. Electrochem. Soc. 154 (10), C562–570. http://dx.doi.org/10.1149/1.2764238

Ouerd, A., Alemany-Dumont, C., Belthome, G., Normand, B., Szunerits, S. (2007). Reactivity of titanium in physiological medium: electrochemical characterization of the metal/ protein interface. J. Electrochem. Soc. 154 (10), C593–C601. http://dx.doi.org/10.1149/1.2769819

Ratner, B.D. (2004). Biomaterials Science: an Introduction to Materials in Medicine. 2nd Edition. Elsevier Academic Press (Ed.), Amsterdam, Boston.

Rechendorff, K., Hovgaard, M.B., Foss, M., Zhdanov, V.P., Besenbacher, F. (2006). Enhancement of protein adsorption induced by surface roughness. Langmuir 22 (22), 10885–10888. http://dx.doi.org/10.1021/la0621923 PMid:17154557

Rubio, J.C., García-Alonso, M.C., Alonso, C., Alobera, M.A., Clemente, C., Munuera, L., Escudero, M.L. (2008). Determination of metallic traces in kidneys, livers, lungs and spleens of rats with metallic implants after a long implantation time. J. Mater. Sci. Mater. Med. 19 (1), 369–375. http://dx.doi.org/10.1007/s10856-007-3002-0 PMid:17607514

Saldana, L., Vilaboa, N., Valles, G., González-Cabrero, J., Munuera, L. (2005). Osteoblast response to thermally oxidized Ti6Al4V alloy. J. Biomed. Mater. Res. 73A(1), 97–107. http://dx.doi.org/10.1002/jbm.a.30264 PMid:15704115

Serro, A.P., Fernandes, A.C., Saramago, B., Lima, J., Barbosa, M.A. (1997). Apatite deposition on titanium surfaces-the role of albumin adsorption. Biomaterials 18 (4), 963–968. http://dx.doi.org/10.1016/S0142-9612(97)00031-8

Serro do, A.P.V.A., Fernandes A.C., de Jesus B., Saramago V. (1997). The influence of proteins on calcium phosphate deposition over titanium implants studied by dynamic contact angle analysis and XPS. Colloid. Surface B 10 (2), 95–104. http://dx.doi.org/10.1016/S0927-7765(97)00060-X

Sundgren, J.E., Bodo, P., Lundstrom, I. (1986). Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. J. Colloid Interf. Sci. 110 (1), 9–20. http://dx.doi.org/10.1016/0021-9797(86)90348-6

Uchida, M., Kim, H.M., Kokubo, T., Fujibayashi, S., Nakamura, T. (2003). Structural dependence of apatite formation on titania gels in a simulated body fluids. J. Biomed. Mater. Res. 64A, 164–170. http://dx.doi.org/10.1002/jbm.a.10414 PMid:12483709

Vaquila, I., Passeggi Jr, M.C.G., Ferron, J. (1996). Temperature effect in the early stages of titanium oxidation. Appl. Surf. Sci. 93 (3), 247–253. http://dx.doi.org/10.1016/0169-4332(95)00334-7

Wagner, C.D., Davis, L.E., Zeller, M.V., Taylor, J.A., Raymond, R.H., Gale, L.H. (1981). Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 3 (5), 211–225. http://dx.doi.org/10.1002/sia.740030506

Wagner, C. D., Riggs, W.M., Davis, L.E., Moulder, J.F., Mulinberg, G.E. (1992). Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division (Eds.), Eden Prairie, Minnesota, USA.

Williams, R.L., Brown, S.A., Merritt, K. (1988). Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials 9 (2), 181–186. http://dx.doi.org/10.1016/0142-9612(88)90119-6

Wojciak-Stothard, B., Madeja, Z., Korohoda, W., Curtis, A., Wilkinson, C. (1995). Activation of macrophage-like cells by multiple grooved substrata. Topographical control of cell behavior. Cell Biol. Int. 19 (6), 485–490. http://dx.doi.org/10.1006/cbir.1995.1092 PMid:7640662




Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es