Laser ablation of polytetrafluoroethylene (PTFE) coatings applied on EN AW-5251 substrates

Authors

  • Guillermo R. Guerrero Vaca Universidad de Córdoba, Departamento de Mecánica
  • Lorenzo Sevilla Hurtado Universidad de Málaga, Departamento de Ingeniería Civil, de Materiales y Fabricación
  • Carlos Soriano Reyes IK4-Tekniker, Unidad de Tecnologías Avanzadas de Fabricación

DOI:

https://doi.org/10.3989/revmetalm.027

Keywords:

Coating removal, Laser ablation, PTFE coating, Teflon removal

Abstract


Currently the most common used methods for removing PTFE rich coatings on metal substrates are: grinding, pyrolysis, chemical processes or a combination of these. While effective, all present serious difficulties. In this paper the use of laser ablation to remove PTFE rich coatings, which have previously been applied to sheets of aluminum magnesium alloy EN AW-5251 H34, is proposed. For this purpose the values of the yield strength, tensile strength, percent elongation, impact energy retained and hardness are analyzed. Equally, the grain size distribution at the microstructural level, the ASTM average grain size and distribution of constituent particles have been evaluated. Measurements were performed to three successive stages of application and laser coating removal. Moreover, the previous set of properties have been determined for the same substrates and stages but using pyrolysis to remove the coating. Comparison of the results shows that the removal by laser ablation does not cause any reduction in the properties of the substrates and may become an industrial alternative to traditional disposal procedures.

Downloads

Download data is not yet available.

References

Arthur, J., Bowman, R., Straw, R. (2008). Robotic laser coating removal system. Final Report, Environmental Security Technology Certification Program, Air Force Research Laboratory, Ohio, USA.

ASTM E-112 (2010). Standard test methods for determining average grain size. ASTM International, USA.

Barletta, M., Gisario, A., Taglaferri, V. (2006). Advance in paint stripping from aluminium substrates. J. Mater. Process. Tech. 173 (2), 232–239. http://dx.doi.org/10.1016/j.jmatprotec.2005.11.029

Coutouly, J.F., Deprez, P., Breaban, F., Longuemard, J.P. (2009). Optimisation of a paint coating ablation process by CO2 TEA laser: Thermal field modelling and real-time monitoring of the process. J. Mater. Process. Tech. 209 (17), 5730–5735. http://dx.doi.org/10.1016/j.jmatprotec.2009.06.001

Drobny, J. (2001). Effects of heat, radiation, and environment on fluoropolymers, technology of fluoropolymers. CRC Press, Boca Ratón, Florida, USA, pp. 171–182.

Drobny, J. (2006). Fluorplastic. Rapra Technology Limited, Shropshire, Reino Unido.

Duarte, J.P., Peças, P. (1998). Limpieza con láser de excímeros de papéis e pergaminos com lama. Rev. Metal. 34, 101–102. http://dx.doi.org/10.3989/revmetalm.1998.v34.i2.669

Flores, T., Ponce, L., Moreno, B., Arronte, M., Fernándaz, M.,García, C. (1998). Nd:YAG laser in art works restoration. Rev. Metal. 34, 98–100. http://dx.doi.org/10.3989/revmetalm.1998.v34.i2.668

Freiwald, D., Peebles, H., Case, R. (1998). Industrial laser–based coatings removal systems. Proc. SPIE 3343, 814–820. http://dx.doi.org/10.1117/12.321608

George, S.R., Leraas, J.A., Langford, S.C., Dickinson, J.T. (2009). Interaction of 157-nm excimer laser radiation with fluorocarbon polymers. Appl. Surf. Sci. 255 (24), 9558–9561. http://dx.doi.org/10.1016/j.apsusc.2009.04.090

Guerrero, G. (2013). Análisis comparativo de los procesos de eliminación de los recubrimientos antiadherentes fluoropoliméricos en superficies metálicas entres tecnologías láser y pirolíticas. Tesis Doctoral. Universidad de Málaga, Málaga, España.

Head, J.D., Niedzielski, J.P. (1991). Laser paint stripping. Wright Laboratory, Air Force Materiel Command, Ohio, USA.

Humphreys, F.J., Hatherl, M. (1995). Recrystallization and Related Annealing Phenomena. Elseiver Science, Oxford, Reino Unido.

Klingenberg, M.L., Naguy, D.A., Naguy, T.A., Straw, R.J., Joseph, C., Mongelli, G.A., Nelson, G.C., Denny, S.L., Arthur, J.J. (2007). Transitioning laser technology to support air force depot transformation needs. Surf. Coat. Tech. 202 (1), 45–57. http://dx.doi.org/10.1016/j.surfcoat.2007.04.056

Klingenberg, M.L., Valencia, J., Price, G., Adams, J.R., Blair, T.P. (2010). Naval application of laser ablation paint removal. Technology. Final Report, Navy Metalworking Center, USA.

Lopez, A.J., Rivas, T., Lamas, J., Ramil, A., Yañez, A. (2010). Optimisation of laser removal of biological crusts in granites. Appl. Phys. A. 100 (3), 733–739. http://dx.doi.org/10.1007/s00339-010-5652-x

Madhukhar, Y.K., Mullick, S., Nath, A.K. (2013). Development of a water-jet assisted laser paint removal process. Appl. Surf. Sci. 286, 192–205. http://dx.doi.org/10.1016/j.apsusc.2013.09.046

Marimuthu, S., Camara, A.M., Whitehead, D., Mativenga, P., Li, L. (2010). Laser removal of TiN coatings from WC micro-tools and in process monitoring. Opt. Laser. Technol. 42 (8), 1233–1239. http://dx.doi.org/10.1016/j.optlastec.2010.03.016

Mateo, M.P., Nicolas, G., Piñon, V., Ramil, A., Yañez, A. (2005). Laser cleaning: an alterenative method for removing oilspill fuel residues. Appl. Surf. Sci. 247 (1–4), 333–339. http://dx.doi.org/10.1016/j.apsusc.2005.01.086

McKeen, L.W. (2006). Florinated coatings and finishes handbook. William Andrews, New York, USA.

Miller, J.C., Haglund, R.F. (1998). Laser ablation and desorption. Academic Press, San Diego, USA.

Mongelli, G., Marqusee, J., Pellerin, C. (2005). Portable handheld laser small area supplemental coatings removal system. Final Report, Headquarters Air Force Materiel Command Depot Modernization and Logistics, Ohio, USA.

Oliver, W.C., Pharr, G.M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (6), 1564–1583. http://dx.doi.org/10.1557/JMR.1992.1564

Olkhov, Y.A., Allayarov, S.R., Tolstopyatov, E.M., Grakovich, P.N., Kalinin, L.A., Dobrovollskii, Y.A., Dixon, D.A. (2010). The effect of continuous CO2 laser radiation on the thermal and molecular–topological properties of polytetrafluoroethylene. High. Energy Chem. 44 (1), 63–74. http://dx.doi.org/10.1134/S0018143910010108

Pantelakis, Sp.G., Haidemenopoulos, G.N. (1998). Effect of novel paint removal processes on the fatigue behavior of aluminum alloy 2024. Surf. Coat. Tech. 106 (2–3), 198–204. http://dx.doi.org/10.1016/S0257-8972(98)00526-X

Pantelakis, Sp.G., Kermanidis, Th.B., Haidemenopoulus, G.N. (1996). Mechanical behavior of 2024 Al alloy specimen subjected to paint stripping by laser radiation and plasma etching. Theor. Appl. Fract. Mec. 25 (2), 139–146. http://dx.doi.org/10.1016/0167-8442(96)00016-X

Prinsloo, F.J., Van Heerden, S.P., Ronander, E. (2007). Efficient TEA CO2-laser-based coating removal system. Proc. SPIE 6346, 63462Q1–63426Q8.

Reznicková, A., Chaloupka, A., Heitz, J., Kolská, J., Švorcik, V. (2011). Surface properties of polymers treated with F2 laser. Surf. Interface Anal. 44 (3), 296–300. http://dx.doi.org/10.1002/sia.3801

Riva, D.A., Pezzetti, F. (1997). Process for removing fluorocarbon resin-based coatings. Patent US5679202.

Schmidt, M., Li, L., Spencer, J., Key, P. (1999). A comparative study of the effects of laser wavelength on laser removal of chlorinated rubber. Appl. Surf. Sci. 138–139, 418–423. http://dx.doi.org/10.1016/S0169-4332(98)00579-0

Schmidt, M., Li, L., Spencer, J., Key, P. (2000). Ablation of a chlorinated rubber polymer and TiO2 ceramic mixture with a Nd:YAG laser. Appl. Surf. Sci. 154–155, 53–59. http://dx.doi.org/10.1016/S0169-4332(99)00374-8

Schmidt, M., Li, L., Spencer, J. (2003). An investigation into the feasibility and characteristics of using a 2.5 kW high power diode laser for paint stripping. J. Mater. Process. Tech. 138 (1–3), 109–115. http://dx.doi.org/10.1016/S0924-0136(03)00057-8

Schuöcker, G.D., Bielak, R. (2007). Laser ablation and competitive technologies in paint stripping of heavy anticorrosion coatings. Proc. SPIE 6346, 34633–34633.

UNE 38347 (2004). Aluminio y aleaciones de aluminio para forja. Serie 5000. EN-AW5251, EN-AW AlMg2. AENOR, España.

UNE-EN ISO 2808 (2007). Pinturas y barnices. Determinación del espesor de película. AENOR, España.

UNE-EN ISO 6892-1 (2005). Materiales metálicos. Ensayos de tracción. Parte 1 Ensayos a temperatura ambiente. AENOR, España.

UNE-EN ISO 148-1 (2009). Materiales metálicos. Ensayo de flexión por choque con péndulo Charpy. Parte 1: Método de ensayo. AENOR, España.

UNE-EN ISO 6507-1 (2006). Materiales metálicos. Ensayo de dureza Vickers. Parte 1: Método de ensayo. AENOR, España.

Wolf, K., Krincher, R., Ermalovich, J. (2009). Laser strip: a portable hand-held laser stripping device for reducing VOC, toxic and particulate emissions, Institute for Research and Technical Assistance, I.R.T.A., USA.

Published

2014-12-30

How to Cite

Guerrero Vaca, G. R., Sevilla Hurtado, L., & Soriano Reyes, C. (2014). Laser ablation of polytetrafluoroethylene (PTFE) coatings applied on EN AW-5251 substrates. Revista De Metalurgia, 50(4), e027. https://doi.org/10.3989/revmetalm.027

Issue

Section

Articles