Revista de Metalurgia, Vol 51, No 1 (2015)

Estudio de las características mecánicas y estructurales del platino y paladio a altas temperaturas


https://doi.org/10.3989/revmetalm.038

Biserka T. Trumic
Mining and Metallurgy Institute Bor,

Lidija J. Gomidželovic
Mining and Metallurgy Institute Bor,

Saša R. Marjanovic
University of Belgrade,

Vesna R. Krstic
Mining and Metallurgy Institute Bor,

Resumen


Se realiza un estudio comparativo de las propiedades mecánicas a alta temperatura del platino y paladio, con el fin de ampliar las aplicaciones de los productos basados en estos metales. El platino y el paladio son de gran importancia y se utilizan ampliamente en la industria química, electrónica y para la fabricación de placas de laboratorio, entre otras aplicaciones. Se estudiaron las siguientes propiedades mecánicas de los metales puros: resistencia a la tracción, velocidad de fluencia y tiempo de rotura bajo condiciones de fluencia. Para esas investigaciones se utilizó una máquina universal de ensayos para realizar los ensayos de tracción. La micro- estructura fue investigada por microscopía óptica. Basándose en los resultados obtenidos, se puede concluir que el platino, en comparación con el paladio, presenta mejores prestaciones para aplicaciones a alta temperatura.

Palabras clave


Deformación; Ensayo de tracción; Fluencia; Metales; Recocido

Texto completo:


HTML PDF XML

Referencias


Biggs, T., Taylor, S.S., van der Lingen, E. (2005). The hardening of platinum alloys for potential jewellery application. Platinum Met. Rev. 49 (1), 2–15. http://dx.doi.org/10.1595/147106705X24409

Bliznakov, S., Vukmirovic, M., Sutter, E., Adzic, R. (2011). Electrodeposition of palladium nanowires and nanorods on carbon nanoparticles. Maced. J. Chem. Chem. Eng. 30 (1), 19–27.

Cagin, T., Dereli, G., Uludogan, M., Tomak, M. (1999). Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B: Condens. Matter. 59, 3468–3473. http://dx.doi.org/10.1103/PhysRevB.59.3468

Desforges, A., Backov, R., Deleuze, H., Mondain-Monval, O. (2005). Generation of Palladium Nanoparticles within Macrocellular Polymeric Supports: Application to Heterogeneous Catalysis of the Suzuki-Miyaura Coupling Reaction. Adv. Funct. Mater. 15 (10), 1689–1695. http://dx.doi.org/10.1002/adfm.200500146

Edwards, J.K., Hutchings, G.J. (2008). Palladium and Gold-Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angew. Chem. Int. Edit. 47 (48), 9192–9198. http://dx.doi.org/10.1002/anie.200802818 PMid:18798185

Fischer, B. (1992). Reduction of Platinum Corrosion in Molten Glass. Platinum Met. Rev. 36 (1), 14–25.

Funabiki, M., Yamada, T., Kayano, K. (1991). Auto exhaust catalysts. Catal. Today 10 (1), 33–43. http://dx.doi.org/10.1016/0920-5861(91)80072-H

Gavin, H. (2010). Platinum group metals research froma global perspective. Platinum Met. Rev. 54 (3), 166–171. http://dx.doi.org/10.1595/147106710X500125

García-Ochoa E.M., Genescá J. (2000). EIS and electrochemical noise study of anodic passivation of palladium in alkaline medium. Rev. Metal. 36, 3–12. http://dx.doi.org/10.3989/revmetalm.2000.v36.i1.492

González-López S., Romero-Serrano A., Vargas-García R., Zeifert B., Cruz-Ramírez A. (2010). Analysis of the deoxidation process of copper with manganese using a platinum electrode-based sensor prepared by MOCVD. Rev. Metal. 46 (3), 219–226. http://dx.doi.org/10.3989/revmetalm.0927

Kim, K.B., Kim, Y.H., Song, K.S., Park, E.D. (2011). Propane combustion over Pt catalysts supported on zeolites. Rev. Adv. Mater. Sci. 28 (1), 35–39.

Kordas K., Nánai L., Bali K., Stepan K., Vajtai R., George T.F., Leppävuori, S. (2000) Palladium thin film deposition from liquid precursors on polymers by projected excimer beams. Appl. Surf. Sci. 168 (1–4), 66–70. http://dx.doi.org/10.1016/S0169-4332(00)00592-4

Loginov, Yu.N., Yermakov, A.V., Grohovskaya, L.G., Studenok, G.I. (2007). Annealing Characteristics and Strain Resistance of 99.93 wt.% Platinum. Platinum Met. Rev. 51 (4), 178–184. http://dx.doi.org/10.1595/147106707X237708

Ning, Y., Yang, Z., Zhao, H. (1996). Platinum recovery by palladium alloy catchment gauzes in nitric acid plants. Platinum Met. Rev. 4 (2), 80–87.

Ohm, W.S., Hill, K.D. (2010). A Mechanism for the Oxidation-Related Influence on the Thermoelectric Behavior of Palladium. Int. J. Thermophys. 31 (8–9), 1402–1416. http://dx.doi.org/10.1007/s10765-010-0748-2

Preston, E. (1960). Platinum in the glass industry. Platinum Met. Rev. 4, 48–55.

Ritvin, E.I., Medovoj, L.A. (1974). Vlianie fiziko-himicheskoj sledi na zharoprochnost merallicheskih materialov. Nauka, Moskva.

Ritvin, E.I. (1987). Zharoprochnost platinovih splavov. Metalurgija, Moskva, Russian.

Redon, R., Rendon-Lara, S.K., Fernández-Osorio, A.L., Ugalde-Saldivar, V.M. (2011). Aerobic synthesis of palladium nanoparticles. Rev. Adv. Mater. Sci. 27, 31–42.

Savickij, E.M., Poljakova, V.P., Gorina, N.B., Roshan, N.R. (1975). Metalovedenie platinovih metalov. Metalurgija, Moskva, Russian. PMid:1223965

Singh, J., Alayon, E.M.C., Tromp, M., Safonova, O.V., Glatzel, P., Nachtegaal, M., Frahm, R., van Bokhoven, J.A. (2008). Generating Highly Active Partially Oxidized Platinum during Oxidation of Carbon Monoxide over Pt/Al2O3: In Situ, Time-Resolved, and High-Energy-Resolution X-Ray Absorption Spectroscopy. Angew. Chem. Int. Edit. 47 (48), 9260–9264. http://dx.doi.org/10.1002/anie.200803427 PMid:18972471

Trumic´, B., Stankovic´, D., Trujic´, V. (2009). Examining the surfaces in used platinum catalysts. J. Min. Metall. Sect. B. 45 (1), 79–87. http://dx.doi.org/10.2298/JMMB0901079T

Trumic´, B., Stankovic´, D., Ivanovic´, A. (2010). The impact of cold deformatioon, annealing temperatures and chemical assays on the mechanical properties of platinum. J. Min. Metall. Sect. B. 46 (1), 51–57. http://dx.doi.org/10.2298/JMMB1001051T

Trumic´, B., GomidÏelovic´, L., Trujic´, V., Krstic´, V., Stankovic´, D. (2012). Comparative analysis of high temperature strength of platinum and its binary alloys with low content of alloying element. Hem. Ind. 66 (3), 395–401. http://dx.doi.org/10.2298/HEMIND110718106T

Wright, J.C. (2002). Jewellery-Related Properties of Platinum: Low Thermal Diffusivity Permits Use of Laser Welding for Jewellery Manufacture. Platinum Met. Rev. 46 (2), 66–72.

Wu, B., Liu, G. (1997). Platinum: Platinum-rhodium thermocouple Wire. Platinum Met. Rev. 41, 81–85.

Xiao, F., Zhao, F., Mei, D., Mo, Z., Zeng, B. (2009). Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens. Bioelectron. 24 (12), 3481–3486. http://dx.doi.org/10.1016/j.bios.2009.04.045 PMid:19524431

Yuantao, N., Zhengfen, Y. (1999). Platinum loss from alloy catalyst gauzes in nitric acid Plants. Platinum Met. Rev. 43 (4), 62–69. http://www.technology.matthey.com/article/43/4/167-167-2/.




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es