Revista de Metalurgia, Vol 51, No 1 (2015)

Evaluación de diferentes ambientes en la sinterización de aleaciones pulvimetalúrgicas consolidadas por inducción de ultra-alta frecuencia


https://doi.org/10.3989/revmetalm.036

Pınar Sari Çavdar
Celal Bayar University, Vocational School, Department of Constriction, Turquía

Uǧur Çavdar
Celal Bayar University, Vocational School, Department of Machinery, Turquía

Resumen


Este trabajo comprende una revisión de la aplicación de la inducción de ultra-alta frecuencia (UHFIS) en la sinterización de aleaciones pulvimetalúrgicas de base hierro para diferentes ambientes. Los tres ambientes estudiados son: atmósfera, argón y vacío aplicados a material ya consolidado. Aleaciones base hierro ya compactadas se sinterizan a temperaturas de 1120 °C durante 550 segundos por medio de máquinas de sinterizado por inducción de potencia de 2,8 kW y 900 kHz de frecuencia. Se compararán las propiedades microestructurales, y los valores obtenidos de densidad, rugosidad y microdureza para todos los ambientes estudiados.

Palabras clave


Consolidación de polvo de hierro; Hierro; Inducción; Sinterización; Sinterizado por inducción de ultra-alta frecuencia

Texto completo:


HTML PDF XML

Referencias


Çivi, C., Tahralı, N., Atik, E. (2014). Reliability of mechanical properties of induction sintered iron based powder metal parts. Mater. Design (53), 383–397. http://dx.doi.org/10.1016/j.matdes.2013.07.034

Çavdar, U. (2014). Mechanical Properties of Hot Forged ANSI 1050 Steel. Materials Testing 56 (3), 208–212. http://dx.doi.org/10.3139/120.110555

Çavdar, U., Atik, E. (2014a). Investigation of conventional and induction sintered iron and iron based powder metal compacts. JOM 66 (6), 1027–1034. http://dx.doi.org/10.1007/s11837-014-0977-0

Çavdar, U., Atik, E. (2014b). Properties of Boronized, Carbonitrided and Steamed Iron-Based Compacts. Materials Testing 56 (2), 126–130. http://dx.doi.org/10.3139/120.110533

Çavdar, U., Unlu, B.S., Atik, E. (2014a). Effect of the copper amount in iron-basedpowder-metal compacts. Materiali in tehnologije/ Materials and technology 49 (1), 57–62.

Çavdar, U., Atik, E., Ataç, A. (2014b). Mechanical properties and hardness results of the medium frequency induction sintered iron based powder metal bushings. Sci. Sinter. 46 (2), 195–203. http://dx.doi.org/10.2298/SOS1402195C

Çavdar, U., Gu.lsahin, I˙. (2014). Ultra high frequency induction welding of powder metal compacts. Rev. Metal. 50 (2), e016. http://dx.doi.org/10.3989/revmetalm.016

Çavdar, U.,Unlu, B.S., Pinar, A.M., Atik, E. (2015). Mechanical properties of heat treated iron based compacts. Materials & Design 65, 312–317. http://dx.doi.org/10.1016/j.matdes.2014.09.015

German, R.M. (2005). A-Z of powder metallurgy, Ed. Elsevier, Oxford, UK, p. 30.

Kim, H.C., Kim, D.K., Woo, K.D., Ko, I.Y., Shon, I.J. (2008). Consolidation of binderless WC–TiC by high frequency induction heating sintering. Int. J. Refract. Met. H. 26 (1) 48–54. http://dx.doi.org/10.1016/j.ijrmhm.2007.01.006

Kim, W., Suh, C.Y., Roh, K.M., Cho, S.W., Na, K.I., Shon, I.J. (2013a). Mechanical properties of (W,Ti)C and (W,Ti)C–NiAl3 cermet consolidated by the high-frequency induction-heating method. J. Alloy Compd. 568, 73–77. http://dx.doi.org/10.1016/j.jallcom.2013.02.187

Kim, W., Suh, C.Y., Roh, K.M., Lim, J.W., Lee, S., Du, S.L., Shon, I.J. (2013b). High-frequency induction heated sintering of High-energy ball milled TiC0.5N0.5 powders and mechanical properties of the sintered products. Ceram. Int. 39 (1), 585–591. http://dx.doi.org/10.1016/j.ceramint.2012.06.068

Parka, N.R., Songb, C.G., Shon, I.J. (2014). Fast low-temperature consolidation of a nanostructured 2Ti–ZrO2 composite for biomedical applications. Ceram. Int. 40 (4), 6311–6317. http://dx.doi.org/10.1016/j.ceramint.2013.10.034

Riera, M.D., Prado, J.M. (2006). Modelling of the plasticity in cold compaction of metal powders. Rev. Metal. 42 (6), 456–462. http://dx.doi.org/10.3989/revmetalm.2006.v42.i6.43

Shon, I.J., Jeong, I.K., Park, J.H., Kim, B.R., Lee, K.T. (2009). Effect of Fe2O3 addition on consolidation and properties of 8 mol% yttria- stabilized zirconia by highfrequency induction heated sintering (HFIHS). Ceram. Int. 35 (1), 363–368. http://dx.doi.org/10.1016/j.ceramint.2007.11.006

Shon, I.J., Oha, H.S., Limb, J.W., Kwon, H. (2013). Mechanical properties and consolidation of binderless nanostructured (Ti,Cr)C from mechanochemically-synthesized powder by high-frequency induction heating sintering. Ceram. Int. 39 (8), 9721–9726. http://dx.doi.org/10.1016/j.ceramint.2013.04.053

Siemiaszko, D., Józwiak, S., Czarnecki, M., Bojar, Z. (2013). Influence of temperature during pressure-assisted induction sintering (PAIS) on structure and properties of the Fe40Al intermetallic phase. Intermetallics 41, 16–21. http://dx.doi.org/10.1016/j.intermet.2013.03.015

Yang, J.H., Kim, Y.W., Kim, J.H., Kim, D.J., Kang, K.W., Rhee, Y.W., Kim, K.S., Song, K.W. (2008). Pressure less rapid sintering of UO2 assisted by high frequency induction heating process. J. Am. Ceram. Soc. 91 (10), 3202–3206. http://dx.doi.org/10.1111/j.1551-2916.2008.02615.x

Zinn, S., Semiatin, S.L. (1998). Elements of Induction Heating: Design, Control and Applications, ASM International, USA, pp. 3,12–13.




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es