Noise resistance applied to the study paints

Authors

  • Santiago Lanchas García-Zarco Departamento de Ingeniería Química, Universidad de Vigo
  • Víctor Alfonsín Pérez Centro Universitario de la Defensa, Escuela Naval Militar
  • Andrés Suarez García Centro Universitario de la Defensa, Escuela Naval Militar
  • Santiago Urréjola Madriñán Centro Universitario de la Defensa, Escuela Naval Militar
  • Ángel Sánchez Bermúdez Departamento de Ingeniería Química, Universidad de Vigo

DOI:

https://doi.org/10.3989/revmetalm.039

Keywords:

Corrosion, Electrochemical noise, Noise resistance, Paints, Power spectral density

Abstract


Electrochemical noise is one of the methods of analysis used to interpret the phenomenon of corrosion. It has a number of advantages over other methodology types including its simplicity, its low cost and the fact that it does not disturb the system. This methodology appears to be effective together with other techniques in metal-electrolyte systems. In this case the technique is applied on its own on commercial anti-corrosion paints for which no information is available from other techniques. The main result of this study reveals the effectiveness of the noise resistance parameter, which had already been tested in the lab, when it is used to explain how the paint system behaves in industry.

Downloads

Download data is not yet available.

References

Ahmed, N.M., Selim, M.M. (2010). Anticorrosive performance of titanium dioxide-talc hybrid pigments in alkyd paint formulations for protection of steel structures. Anti- Corros. Methods Mater. 57 (3), 133–141. http://dx.doi.org/10.1108/00035591011040092

ASTM International (2012). Standard Terminology for Paint, Related Coatings, Materials, and Applications. (ASTM D1612-05). West Conshohocken, PA, 2005, USA. http:// dx.doi.org/10.1520/D0016-12.

Casta-eda, I., Romero, M., Malo, J.M., Uruchurtu, J. (2010). Electrochemical noise of the erosion-corrosion of copper in relation with its hydrodynamic parameters. Rev. Metal. 46 (5), 446–457.

Espada Recarey, L., Sánchez Bermúdez, A., Urréjola Madri-án, S., Bouzada Alvela, F. (2001). Noise resistance applied to the study of zinc rich paints. Rev. Metal. 37 (1), 24–33. http://dx.doi.org/10.3989/revmetalm.2001.v37.i1.438

Cottis, R.A. (2001). Interpretation of electrochemical noise data. Corrosion 57 (3), 265–285. http://dx.doi.org/10.5006/1.3290350

Deyá, M.C., Del Amo, B., Spinelli, E., Romagnoli, R. (2013). The assessment of a smart anticorrosive coating by the electrochemical noise technique. Prog. Org. Coat. 76 (4) 525–532. http://dx.doi.org/10.1016/j.porgcoat.2012.09.014

Faidi, S.E., Scantlebury, J.D., Bullivant, P., Whittle, N.T., Savin, R. (1993). An electrochemical study of zinc-containing epoxy coatings on mild steel. Corros. Sci. 35 (5–8), 1319–1328. http://dx.doi.org/10.1016/0010-938X(93)90354-J

Gaona-Tiburcio, C., Aguilar, L.M.R., Zambrano, P., Estupi-án López, F., Cabral, J.A., Nieves-Mendoza, D., Castillo- González, E., Almeraya-Calderón, F. (2014). Electrochemical noise analysis of nickel based superalloys in acid solutions. Int. J. Electrochem. Sci. 9 (2), 523–533.

Hare, C.H. (1995). Protective Coatings: Fundamentals of Chemistry and composition. Surf. Coat. Int. 78, pp. 1–14-289–231.

Homborg, A.M., Tinga, T., Zhang, X., van Westing, E.P.M., Oonincx, P.J., de Wit, J.H.W., Mol, J.M.C. (2012). Time– frequency methods for trend removal in electrochemical noise data. Electrochim. Acta 70, 199–209. http://dx.doi.org/10.1016/j.electacta.2012.03.062

Mansfeld, F., Xiao, H., Han, L.T., Lee, C.C. (1997). Electrochemical impedance and noise data for polymer coated steel exposed at remote marine test sites. Prog. Org. Coat. 30 (1–2), 89–100. http://dx.doi.org/10.1016/S0300-9440(96)00675-3

Muniandy, S.V., Chew, W.X., Kan, C.S. (2011). Multifractal modelling of electrochemical noise in corrosion of carbon steel. Corros. Sci. 53 (1), 188–200. http://dx.doi.org/10.1016/j.corsci.2010.09.005

Olaya-Flórez, J., Torres-Luque, M.M. (2012). Corrosion resistance of organic coatings through electrochemical impedance spectroscopy. Ingeniería y Universidad 16 (1), 43–58.

Pujar, M.G., Anita, T., Shaikh, H., Dayal, R.K., Khatak, H.S. (2007). Analysis of electrochemical noise (EN) data using MEM for pitting corrosion of 316 SS in chloride solution. Int. J. Electrochem. Sci. 2 (4), 301–310.

Sarmiento, E., González-Rodriguez, J.G., Uruchurtu, J., Sarmiento, O., Menchaca, M. (2009). Fractal analysis of the corrosion inhibition of carbon steel in a bromide solution by lithium chromate. Int. J. Electrochem. Sci. 4 (1), 144–155.

Shao, Y., Jia, C., Meng, G., Zhang, T., Wang, F. (2009). The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel. Corros. Sci. 51 (2), 371–379. http://dx.doi.org/10.1016/j.corsci.2008.11.015

Skerry, B.S., Eden, D.A. (1987). Electrochemical testing to assess corrosion protective coatings. Prog. Org. Coat. 15 (3), 269–285.

Published

2015-03-30

How to Cite

Lanchas García-Zarco, S., Alfonsín Pérez, V., Suarez García, A., Urréjola Madriñán, S., & Sánchez Bermúdez, Ángel. (2015). Noise resistance applied to the study paints. Revista De Metalurgia, 51(1), e039. https://doi.org/10.3989/revmetalm.039

Issue

Section

Articles

Most read articles by the same author(s)