Revista de Metalurgia, Vol 51, No 2 (2015)

Corrosión atmosférica marina de aceros al carbono


https://doi.org/10.3989/revmetalm.045

Manuel Morcillo
Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), España

Jenifer Alcántara
Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), España

Iván Díaz
Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), España

Belén Chico
Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), España

Joaquín Simancas
Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), España

Daniel de la Fuente
Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), España

Resumen


La investigación fundamental en corrosión atmosférica marina de aceros al carbono es un campo científico relativamente joven que presenta grandes lagunas de conocimiento. La formación de akaganeíta en los productos de corrosión que se forman sobre el acero cuando se expone a atmósferas marinas conduce a un incremento notable de la velocidad de corrosión. En el trabajo se abordan las siguientes cuestiones: (a) condiciones ambientales necesarias para la formación de akaganeíta, (b) caracterización de la akaganeíta en los productos de corrosión formados, (c) mecanismos de corrosión del acero al carbono en atmósferas marinas, (d) exfoliación de las capas de herrumbre formadas en atmósferas marinas muy agresivas, (e) predicción de la velocidad de corrosión a largo plazo, y (f) comportamiento de aceros patinables. La investigación se ha llevado a cabo en campo, en el Parque Eólico de Cabo Vilano (Camariñas, Galicia) en un amplio rango de salinidades atmosféricas, y a nivel de laboratorio acudiendo a técnicas convencionales de corrosión atmosférica y diversas técnicas analíticas de caracterización de superficies: microscopía electrónica de barrido (MEB)/ espectrometría de dispersión de energía (EDE), difracción de rayos-X (DRX), espectroscopía Mössbauer y MEB/espectroscopía μRaman

Palabras clave


Acero al carbono; Atmósfera marina; Corrosión; Difracción de rayos X; Espectroscopía Mössbauer; Espectroscopía μRaman; Microscopía electrónica de barrido/Espectroscopia de dispersión de energía; Microscopía electrónica de transmisión/Difracción electrones

Texto completo:


HTML PDF XML

Referencias


EN ISO 9223 (2012). Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation, European Committee for Standardization, Brussels.

EN ISO 9225 (2012). Corrosion of metals and alloys - Corrosivity of atmospheres - Measurement of environmental parameters affecting corrosivity of atmospheres, European Committee for Standardization, Brussels.

ISO 8407 (1991). Corrosion of metals and alloys - Removal of corrosion products from corrosion test specimens, International Organization for Standardization, Genève.

ASTM A-242/A-242M-04 (2007). Standard specification for high-strength low-alloy structural steel, American Society for Testing and Materials, Philadelphia.

Alcántara, J., Chico, B., Díaz, I., de la Fuente, D., Morcillo, M. (2015). Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel. Corros. Sci. (in press). http://dx.doi.org/10.1016/j.corsci.2015.04.015

Antunes, R.A., Costa, I., de Faria, D.L.A. (2003). Characterization of corrosion products formed on steels in the first months of atmospheric exposure. Mater. Res. 6 (3), 403–408. http://dx.doi.org/10.1590/S1516-14392003000300015

Asami, K., Kikuchi, M. (2003). In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal–industrial atmosphere for 17 years. Corros. Sci. 45 (11), 2671–2688. http://dx.doi.org/10.1016/S0010-938X(03)00070-2

Barton, K. (1973). Protection Against Atmospheric Corrosion. John Wiley and Sons, New York.

Benarie, M., Lipfert, F.L. (1986). A general corrosion function in terms of atmospheric pollutant concentrations and rain pH. Atmosph. Environ. 20 (10), 1947–1958. http://dx.doi.org/10.1016/0004-6981(86)90336-7

Bystrom, A., Bystrom, A.M. (1950). The crystal structure of hollandite, the related manganese oxide minerals, and α-MnO2. Acta Cryst. 3, 146–154. http://dx.doi.org/10.1107/S0365110X5000032X

Cano, H. (2013). Aceros patinables (Cu, Cr, Ni): Resistencia a la corrosión atmosférica y soldabilidad, Ph. Thesis, Complutense University, Madrid.

Casta-o, J.G., Botero, C.A., Restrepo, A.H., Agudelo, E.A., Correa, E., Echeverría, F. (2010). Atmospheric corrosion of carbon steel in Colombia. Corros. Sci. 52 (1), 216–223. http://dx.doi.org/10.1016/j.corsci.2009.09.006

Cook, D.C. (2005). Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments. Corros. Sci. 47 (10), 2550–2570. http://dx.doi.org/10.1016/j.corsci.2004.10.018

Cornell, R.M., Schwertmann, U. (1996). The Iron Oxides, Structure, Properties, Occurrence and Uses. VCH, Weinheim.

Díaz, I. (2012). Corrosión atmosférica de aceros patinables de nueva generación, Ph. Thesis, Complutense University, Madrid.

Díaz, I., Cano, H., de la Fuente, D., Chico, B., Vega, J.M., Morcillo, M. (2013). Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity. Corros. Sci. 76, 348–360. http://dx.doi.org/10.1016/j.corsci.2013.06.053

Dillmann, P., Mazaudier, F., Hoerlé, S. (2004). Advances in understanding atmospheric corrosion of iron. I. Rust characterization of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corros. Sci. 46 (6), 1401–1429. http://dx.doi.org/10.1016/j.corsci.2003.09.027

Hara, S. (2008). A X-Ray diffraction analysis on constituent distribution of heavy rust layer formed on weathering steel using synchrotron radiation. Corrosion Engineering 57 (2), 70–75. http://dx.doi.org/10.3323/jcorr.57.70

Hara, S., Kamimura, T., Miyuki, H., Yamashita, M. (2007). Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge. Corros. Sci. 49 (3), 1131–1142. http://dx.doi.org/10.1016/j.corsci.2006.06.016

Hiller, J.E. (1966). Phasenumwandlungen im Rost. Werkst. Korros.- Materials and Corrosion 17 (11), 943–951. http://dx.doi.org/10.1002/maco.19660171104

Hou, W., Liang, C. (1999). Eight-year atmospheric corrosion exposure of steels in China. Corrosion 55 (1), 65–73. http://dx.doi.org/10.5006/1.3283967

Ishikawa, T., Isa, R., Kandori, K., Nakayama, T., Tsubota, T. (2004). Influences of metal chlorides and sulfates on the formation of B-FeOOH particles by aerial oxidation of FeCl2 Solutions. J. Electrochem. Soc. 151, B586–B594. http://dx.doi.org/10.1149/1.1803837

Ishikawa, T., Kumagai, M., Yasukawa, A., Kandori, K. (2001). Characterization of rust on weathering steel by gas adsoption. Corrosion 57 (4), 346–352. http://dx.doi.org/10.5006/1.3290358

Ishikawa, T., Maeda, A., Kandori, K., Tahara, A. (2006). Characterization of Rust on Fe-Cr, Fe-Ni, and Fe-Cu Binary Alloys by Fourier Transform Infrared and N2 Adsorption. Corrosion 62 (7), 559–567. http://dx.doi.org/10.5006/1.3280669

Ishikawa, T., Yoshida, T., Kandori, K., Nakayama, T., Hara, S. (2007). Assessment of protective function of steel rust layers by N2 adsorption. Corros. Sci. 49 (3), 1468–1477. http://dx.doi.org/10.1016/j.corsci.2006.08.020

Kihira, H., Kimura, M. (2011). Advancements of weathering steel technologies in Japan. Corrosion 67 (9), 1–13. http://dx.doi.org/10.5006/1.3628684

Lair, V., Antony, H., Legrand, L., Chaussé, A. (2006). Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron. Corros. Sci. 48 (8), 2050–2063. http://dx.doi.org/10.1016/j.corsci.2005.06.013

Ma, Y., Li, Y., Wang, F. (2009). Corrosion of low carbon steel in atmospheric environments of different chloride content. Corros. Sci. 51 (5), 997–1006. http://dx.doi.org/10.1016/j.corsci.2009.02.009

Mackay, A.L. (1960). B-Ferric oxyhydroxide. Mineral Mag. 32, 545–557. http://dx.doi.org/10.1180/minmag.1960.032.250.04

Morcillo, M., Feliu, S., Simancas, J. (1993). Deviation from bilogarithmic law for atmospheric corrosion of steel. Br. Corros. J. 28, 50–52. http://dx.doi.org/10.1179/000705993798268278

Morcillo, M., Almeida, E., Rosales, B., Uruchurtu, J., Marrocos, M. (1998). Corrosion y Protección de Metales en las Atmósferas de Iberoamérica. Parte I - Mapas de Iberoamérica de Corrosividad Atmosférica (Proyecto MICAT, XV.1/CYTED). CYTED, Madrid.

Morcillo, M., De la Fuente, D., Díaz, I., Cano, H. (2011). Atmospheric corrosion of mild steel. A review. Rev. Metal. 47 (5), 426–444. http://dx.doi.org/10.3989/revmetalm.1125

Morcillo, M., Díaz, I., Chico, B., Cano, H., De la Fuente, D. (2014a). Wethearing steels: from empirical development to scientific desing. A review. Corros. Sci. 83, 6–31. http://dx.doi.org/10.1016/j.corsci.2014.03.006

Morcillo, M., Chico, B., Alcántara, J., Díaz, I., Simancas, J., De la Fuente, D. (2014b). Atmospheric corrosion of mild steel in chloride-rich environments. Questions to be answered. Mater. Corros. http://dx.doi.org/10.1002/maco.201407940

Morcillo, M., Chico, B., Díaz, I., Cano, H., De la Fuente, D. (2013). Atmospheric corrosion data of weathering steels. A review. Corros. Sci. 77, 6–24. http://dx.doi.org/10.1016/j.corsci.2013.08.021

Morcillo, M., González-Calbet, J.M., Jiménez, J.A., Díaz, I., Alcántara, J., Chico, B., Mazarío-Fernández, A., Gómez-Herrero, A., Llorente, I., De la Fuente, D. (2015). Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterisation. Corrosion (in press). http://dx.doi.org/10.5006/1672

Murad, E., Johnston, J.H. (1987). Iron oxides and oxyhydroxides. Mössbauer Spectroscopy Applied to Inorganic Chemistry. Long, G.J. (Ed.), PlenumPress, New York, pp. 507–582.

Murata, T. (2000). Weathering steel, en: R. W. Revie (Ed.). Uhlig's Corrosion Handbook. J. Wiley & Sons, New York, pp. 569–580.

Neff, D., Dillmann, P., Bellot-Gurlet, L., Beranger, G. (2005). Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system. Corros. Sci. 47 (2), 515–535. http://dx.doi.org/10.1016/j.corsci.2004.05.029

Nippon Steel Corporation (2006). Coastal Weathering Steel (AC 330).

Nishimura, T., Katayama, H., Noda, K., Kodama, T. (2000). Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions. Corrosion 56 (9), 935–941. http://dx.doi.org/10.5006/1.3280597

Nomura, K., Tasaka, M., Ujihira, Y. (1988). Conversion electron Mössbauer spectrometric study of corrosion products of iron immersed in sodium chloride solution. Corrosion 44 (3), 131–135. http://dx.doi.org/10.5006/1.3583914

Raman, A. (1988). Atmospheric corrosion problems with weathering steels in Lousiana bridges. Degradation of Metals in the Atmosphere, S.W. Dean and T. S. Lee (Ed.), ASTM STP 965, Philadelphia, pp. 16–29.

Raman, A., Nasrazadani, S., Sharma, L. (1989). Morphology of rust phases formed on weathering steels in various laboratory corrosion test. Metallography 22 (1), 79–96. http://dx.doi.org/10.1016/0026-0800(89)90024-4

Raman, A., Nasrazadani, S., Sharma, L., Razvan, A. (1987). Morphology of rust phases formed on weathering steels during outdoor atmospheric exposure in sheltered locations under the bridges. Pract. Met. 24, 535–548.

Razvan, A., Raman, A. (1986). Morphology of rust phases formed on naturally weathered weathering steels in bridge spans. Pract. Met. 23, 223–236.

Rémazeilles, C., Refait, P. (2007). On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corros. Sci. 49 (2), 844–857. http://dx.doi.org/10.1016/j.corsci.2006.06.003

Sagoe-Crentsil, K.K., Glasser, F.P. (1993). Constitution of green rust and its significance to the corrosion of steel in Portland cement. Corrosion 49 (6), 457–463. http://dx.doi.org/10.5006/1.3316072

Selwyn, L.S., Sirois, P.J., Argyropoulos, V. (1999). The corrosion of excavated archaeological iron with details on weeping and akaganeite. Stud. Conserv. 44 (4), 217–232. http://dx.doi.org/10.1179/sic.1999.44.4.217

Shibata, T. (2014). Corrosion modelling of carbon steel, 19th International Corrosion Congress (ICC2014), The Corrosion Science Society of Korea, Jeju, Korea.

Shreir, L.L., Javman, R.A., Burstein, G.T. (1993). Corrosion, Publisher Butterworth-Heinemann, Oxford, p. 1146.

Ståhl, K., Nielsen, K., Jiang, J., Lebech, B., Hanson, J.C., Norby, P., Van Lanschot, J. (2003). On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corros. Sci. 45 (11), 2563–2575. http://dx.doi.org/10.1016/S0010-938X(03)00078-7

Stratmann, M., Bohnenkamp, K., Engell, H. J. (1983). An electrochemical study of phase-transitions in rust layers. Corros. Sci. 23 (9), 969–985. http://dx.doi.org/10.1016/0010-938X(83)90024-0

Tanaka, H., Mishima, R., Hatanaka, N., Ishikawa, T., Nakayama, T. (2014). Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media. Corros. Sci. 78, 384–387. http://dx.doi.org/10.1016/j.corsci.2013.08.023

Turgoose, S. (1982). Post-excavation changes in iron antiquities. Stud. Conserv. 27, 97–101. http://dx.doi.org/10.1179/sic.1982.27.3.97




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es