Revista de Metalurgia, Vol 51, No 3 (2015)

Análisis comparativo del consumo energético de un sistema de calentamiento por inducción a alta frecuencia para aplicaciones de procesado de materiales


https://doi.org/10.3989/revmetalm.046

Mehmet Taştan
Celal Bayar University, Department of Electric & Energy, Turquía

Hayrettin Gökozan
Celal Bayar University, Department of Electric & Energy, Turquía

Sezai Taşkin
Celal Bayar University, Department of Electrical & Electronics, Turquía

Uğur Çavdar
Celal Bayar University, Department of Machinery, Turquía

Resumen


En este estudio se comparan los consumos energéticos al procesar Ti-6Al-4V por inducción a 900 kHz. Se ha analizado la potencia total consumida y la energía consumida por muestra. Los experimentos se han realizado en un sistema de inducción de ultra alta frecuencia a 900 kHz, 2,8 kW. Se han considerado dos casos, en el primero se ha calentado Ti-6Al-4V a 900 °C por el método clásico usado en la industria y enfriado en agua; posteriormente las muestras se han calentado a 600, 650 y 700 °C y enfriadas al aire para relajar tensiones. En los tres casos se midió el consumo energético. En el segundo caso, cinco muestras diferentes fueron tratadas a temperaturas entre 660 y 1120 °C, midiendo el consumo energético en todos los casos. Asimismo se analizó el efecto del incremento de temperatura en el consumo energético, observándose que al calentar los materiales de base titanio usados en este trabajo con inducción de alta frecuencia, el consumo energético aumenta al aumentar la temperatura, siendo la velocidad de incremento del consumo energético mayor que la velocidad de incremento de la temperatura.

Palabras clave


Calentamiento por inducción; Consumo energético comparativo; Coste energético comparativo para procesado de materiales; Ti-6Al-4V; Tratamiento térmico; Ultra alta frecuencia

Texto completo:


HTML PDF XML

Referencias


Babu, B., Lindgren, L.E. (2013). Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V. Int. J. Plasticity 50, 94–108. http://dx.doi.org/10.1016/j.ijplas.2013.04.003

Benedetti, M., Heidemann, J., Peters, J.O., Lutjering, G. (2005). Influence of sharp microstructural gradients on the fatigue crack growth resistance of α+β and near-α titanium alloys. Fatigue Fract. Eng. M. 28 (10), 909–922. http://dx.doi.org/10.1111/j.1460-2695.2005.00932.x

Brunelli, K., Dabala, M., Dughiero, F., Magrini, M. (2009). Diffusion treatment of Ni-B coatings by induction heating to harden the surface of Ti-6Al-4V alloy. Mater. Chem. Phys. 115 (1), 467–472. http://dx.doi.org/10.1016/j.matchemphys.2009.01.016

Çavdar, U. (2014). Mechanical Properties of Hot Forged ANSI 1050 Steel. Mater. Test. 56 (3), 208–212. http://dx.doi.org/10.3139/120.110555

Çavdar, U., Atik, E. (2014). Investigation of conventional and induction sintered iron and iron based powder metal compacts. JOM 66 (6), 1027–1034. http://dx.doi.org/10.1007/s11837-014-0977-0

Çavdar, U., Gulsahin, I. (2014). Ultra high frequency induction welding of powder metal compacts. Rev. Metal. 50 (2), e016. http://dx.doi.org/10.3989/revmetalm.016

Çavdar, U., Kus¸oglu, I.M. (2014). Effects of coil design on induction welding of sintered iron based compacts. Mater. Test. 56 (11–12), 973–979. http://dx.doi.org/10.3139/120.110641

Çavdar, U., Atik, E., Akgul, M.B. (2014a). Magnetic-Thermal Analysis and rapid consolidation of 3 wt.% Cu mixed iron based powder metal compacts sintered by medium frequency induction heated system. Powder Metall. Met. C. 53 (3–4), 191–198. http://dx.doi.org/10.1007/s11106-014-9603-5. http://dx.doi.org/10.1007/s11106-014-9603-5

Çavdar, U., Atik, E., Atas¸, A. (2014b). Mechanical, properties and hardness results of the medium frequency induction sintered iron based powder metal bushing. Sci. Sinter. 46 (2), 195–203. http://dx.doi.org/10.2298/SOS1402195C

Çavdar, U., Unlu, B.S., Atik, E. (2014c). Effect of copper content in iron based powder metal compacts. Mater. Tehnol. 48 (6), 977–982. UDK 621.762:621.762.5:669.3.

Çavdar, U., Yalamaç, E., Gulsahin, I. (2014d). Effects of surface finishing on the mechanical properties of induction welded iron based sintered compacts. Mater. Test. 56 (10), 852–857. http://dx.doi.org/10.3139/120.110640

Delgado-Gomes, V., Oliveira-Lima, J.A., Lima, C., Martins, J.F., Jardim-Goncalves, R., Fernao Pires, V. (2013). Energy Consumption Evaluation to Reduce Manufacturing Costs. POWERENG 2013, Fourth International Conference, Istanbul, pp. 1012–1016. http://dx.doi.org/10.1109/powereng.2013.6635749

Gokozan, H., Taskin, S., Seker, S., Ekiz, H. (2014). Aneural network based approach to estimate of power system harmonics for an induction furnace under the different load conditions. Electr. Eng. 96 (4), 79–84.

Han, J., Choi, C.S., Park, W.K., Lee, I., Kim, S.H. (2014). PLCBased Photovoltaic System Management for Smart Home Energy Management System. IEEE International Conference, on Consumer Electronics (ICCE), pp. 542–543. Las Vegas, NY. PMCid:PMC3955159

Hinton, K., Baliga, J., Feng, M., Ayre, R., Tucker, R.S. (2011). Power Consumption and Energy Efficiency in the Internet. IEEE Network 25 (2), 6–12. http://dx.doi.org/10.1109/MNET.2011.5730522

Ibrahim, K.M., Hussein, A.H., Abdelkawy. M. (2013). Effect of Siaddition as a grain refiner on microstructure and properties of Ti-6Al-4V Alloy. T. Nonferr. Metal. Soc. 23 (7), 1863–1874. http://dx.doi.org/10.1016/S1003-6326(13)62671-0

Li, X., Sugui, T., Xianyu, B., Liqing, C. (2013). Influence of heat treatment on microstructure and creep properties of hot continuous rolled Ti-6Al-4V alloy. Mat. Sci. Eng. A-Struct. 559, 401–406. http://dx.doi.org/10.1016/j.msea.2012.08.116

Markovsky, P.E., Semiatin, S.L. (2010). Microstructure and mechanical properties of commercial-purity titanium after rapid (induction) heat treatment. J. Mater. Process. Tech. 210 (3), 518–528. http://dx.doi.org/10.1016/j.jmatprotec.2009.10.015

Markovsky, P.E., Semiatin, S.L. (2011). Tailoring of microstructure and mechanical properties of Ti-6Al-4V with local rapid (induction) heat treatment. Mat. Sci. Eng. A-Struct. 528 (7–8), 3079–3089. http://dx.doi.org/10.1016/j.msea.2010.12.002

Nishikiori, S., Hattori, H., Noda, T., Okabe, M., Isobe, S. (1996). Application of heat resistant titanium-based compressor with dual structure. Mat. Sci. Eng. A-Struct. 213 (1–2), 124–127. http://dx.doi.org/10.1016/0921-5093(96)10257-4

Ozdemir, A., Tas¸tan, M. (2014). PLL Based Digital Adaptive Filter for Detecting Interharmonics. Math. Probl. Eng. (ID 501781), 1–10. http://dx.doi.org/10.1155/2014/501781

Rhaipu, S. (1998). The effect of microstructural gradients on superplastic forming of Ti-6Al-4V. J. Mater. Process. Tech. 80–81, 90–95. http://dx.doi.org/10.1016/S0924-0136(98)00179-4

Riera, M.D., Prado, J.M. (2006). Modelling of the plasticity in cold compaction of metal powders. Rev. Metal. 42 (6), 456–462. http://dx.doi.org/10.3989/revmetalm.2006.v42.i6.43

Sarı Çavdar, P., Çavdar, U. (2015). The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts. Rev. Metal. 51 (1), e036. http://dx.doi.org/10.3989/revmetalm.036

Semiatin, S.L., Sukonnik, I.M. (1997). Rapid heat treatment of titanium alloys. Proc. 7th International Symposium on Physical Simulation of Casting, Hot Rolling and Welding. H.G. Suzuki, et al. (Eds.), Dynamic Systems, Inc. Poestenkill, NY, pp. 395–405.

Taskin, S., Gokozan, H. (2011). Determination of the Spectral Properties and Harmonic Levels for Driving an Induction Motor by an Inverter Driver under the Different Load Conditions. Elektron. Elektrotech. 108 (2), 75–80. http://dx.doi.org/10.5755/j01.eee.108.2.149

Tsai, C.H., Bai, Y.W., Lin, M.B., Jhang, R.J.R., Chung, C.Y. (2013). Reduce the Standby Power Consumption of a Microwave Oven. IEEE Transactions on Consumer Electronics 59 (1), 54–61. http://dx.doi.org/10.1109/TCE.2013.6490241. www.enerjienstitusu.com/elektrik-fiyatlari/. http://dx.doi.org/10.1109/TCE.2013.6490241

Yu, C., Sung, C.H., Kuo, C.H., Yen, M.H., Chen, S.J. (2012). Design and implementation of a low-power OFDM receiver for wireless communications. IEEE Transactions on Consumer Electronics 58 (3), 739–745. http://dx.doi.org/10.1109/TCE.2012.6311312




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es