Revista de Metalurgia, Vol 51, No 4 (2015)

Efecto de la incorporación de ceniza volante y escoria de horno alto en el comportamiento electroquímico de concretos de cemento comercial


https://doi.org/10.3989/revmetalm.058

Oscar J. Gutiérrez-Junco
Universidad Pedagógica y Tecnológica de Colombia, Colombia

Yaneth Pineda-Triana
Universidad Pedagógica y Tecnológica de Colombia, Instituto para la Investigación e Innovación en Ciencia y Tecnología de Materiales (INCITEMA), Colombia

Enrique Vera-López
Universidad Pedagógica y Tecnológica de Colombia, Instituto para la Investigación e Innovación en Ciencia y Tecnología de Materiales (INCITEMA), Colombia

Resumen


Este trabajo presenta los resultados de la evaluación de propiedades de pastas de cemento comercial (CPC), mezcladas con ceniza volante (FA) y escoria de alto horno (GBFS). Inicialmente un total de 30 combinaciones fueron evaluadas en términos de resistencia a la compresión para establecer las proporciones óptimas de las materias primas. Después de esto, cuatro mezclas optimizadas fueron caracterizadas durante el proceso de fraguado y endurecimiento. Se realizaron ensayos electroquímicos en cilindros de concreto elaborados con los cementantes y con una varilla de acero de construcción embebida en su interior. Con el objetivo de evaluar el comportamiento frente a la corrosión se estudiaron aspectos termodinámicos y cinéticos. Los resultados mostraron que cementos comerciales mezclados con ceniza volante y escoria de alto horno, como los usados en esta investigación, presentan menor resistencia mecánica y a la corrosión que un cemento comercial.

Palabras clave


Cemento comercial; Cemento hidráulico adicionado; Corrosión; Materiales cementantes suplementarios

Texto completo:


HTML PDF XML

Referencias


Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Prog. Energ. Combust. 36 (3), 327–363. http://dx.doi.org/10.1016/j.pecs.2009.11.003

ACI 201.2R-01 (2000). Guía para la Durabilidad del Hormigón. Informe técnico ACI Committee 201.

ACI 233R-95 (2000). Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete, Technical Report (Reapproved 2000). ACI Committee 233.

ACI 232.2R-03 (2003). Use of Fly Ash in Concrete, Technical Report ACI Committee 232.

ACI 222.R-01 (2010). Protection of Metals in Concrete Against Corrosion, Technical Report (Reapproved 2010). ACI Committee 232.

ASTM A262 (2002). Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, ASTM International, West Conshohocken, Pa.

ASTM A276 (2010). Standard Specification for Stainless Steel Bars and Shapes, ASTM International, West Conshohocken, Pa.

ASTM C188 (1995). Standard Test Method for Density of Hydraulic Cement, ASTM International, West Conshohocken, Pa.

ASTM C204 (1996). Standard Test Method for Fineness of Hydraulic Cement by Air Permeability Apparatus, ASTM International, West Conshohocken, Pa.

ASTM C187-98 (1998). Standard Test Method for Normal Consistency of Hydraulic Cement, ASTM International, West Conshohocken, Pa.

ASTM C230/C230M (1998). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, ASTM International, West Conshohocken, Pa.

ASTM C109/C109M (1999). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, Pa.

ASTM C150 (1999). Standard Specification for Portland Cement, ASTM International, West Conshohocken, Pa.

ASTM C191 (1999). Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, Pa.

ASTM C989 (1999). Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars, ASTM International, West Conshohocken, Pa.

ASTM C192/C192M (2000). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM International, West Conshohocken, Pa.

ASTM C311 (2000). Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use as a Mineral Admixture in Portland-Cement Concrete, ASTM International, West Conshohocken, Pa.

ASTM C595 (2000). Standard Specification for Blended Hydraulic Cements, ASTM International, West Conshohocken, Pa.

ASTM C39/C39M (2001). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, Pa.

ASTM C618 (2005). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, Pa.

ASTM C1157/C1157M (2011). Standard Performance Specification for Hydraulic Cement, ASTM International, West Conshohocken, Pa.

ASTM D3173 (2011). Standard Test Method for Moisture in the Analysis Sample of Coal and Coke, ASTM International, West Conshohocken, Pa.

ASTM G102-89 (1999). Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, Reapproved 1999, ASTM International, West Conshohocken, Pa.

ASTM G59-97 (2003). Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. Reapproved 2003. ASTM International, West Conshohocken, Pa.

Bermúdez-Odriozola, M.A. (2007). Corrosión de las armaduras del hormigón armado en ambiente marino: Zona de carrera de mareas y zona sumergida. Tesis doctoral, Universidad Politécnica de Madrid - Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Madrid, Espa-a.

Bostanci, S.C., Limbachiya, M., Kew, H. (2015). Portland slag and composites cement concretes: engineering and durability properties. J. Clean Prod. Article in press, 1–11.

BS EN 196-9 (2003). Methods of testing cement, Heat of hydration, Semi-adiabatic method, British Standard.

Dong, B., Qiu, Q., Xiang, J., Huang, C., Sun, H., Xing, F., Liu, W. (2015). Electrochemical impedance interpretation of the carbonation behavior for fly ash–slag–cement materials. Constr. Build. Mater. 93, 933-942. http://dx.doi.org/10.1016/j.conbuildmat.2015.05.066

Fernández-Carrasco, L., Torréns-Martín, D., Martínez-Ramírez, S. (2012). Carbonation of ternary building cementing materials. Cement Concrete Comp. 34 (10), 1180-1186. http://dx.doi.org/10.1016/j.cemconcomp.2012.06.016

Flatt, R.J., Roussel, N., Cheeseman, C.R. (2012). Concrete: An eco material that needs to be improved. J. Eur. Ceram. Soc. 32 (11), 2787–2798. http://dx.doi.org/10.1016/j.jeurceramsoc.2011.11.012

Fonseca, F.S., Godfrey, R.C., Siggard, K. (2015). Compressive strength of masonry grout containing high amounts of class F fly ash and ground granulated blast furnace slag. Constr. Build. Mater. 94, 719–727. http://dx.doi.org/10.1016/j.conbuildmat.2015.07.115

Galán, I. (2011). Carbonatación del hormigón: combinación de CO2 con las fases hidratadas del cemento y frente de cambio de pH. Tesis doctoral. Universidad Complutense de Madrid, Madrid, Espa-a.

Jalal, M., Pouladkhan, A., Harandi, O.F., Jafari, D. (2015). Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Constr. Build. Mater. 94, 90–104. http://dx.doi.org/10.1016/j.conbuildmat.2015.07.001

Jeong, Y., Park, H., Jun, Y., Jeong, J.H., Oh, J.E. (2015). Microstructural verification of the strength performance of ternary blended cement systems with high volumes of fly ash and GGBFS. Constr. Build. Mater. 95, 96–107. http://dx.doi.org/10.1016/j.conbuildmat.2015.07.158

Juenger, M.C.G., Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement Concrete Res. 78, 71–80. http://dx.doi.org/10.1016/j.cemconres.2015.03.018

Lothenbach, B., Scrivener, K., Hooton, R.D. (2011). Supplementary cementitious materials. Cement Concrete Res. 41, 1244–1256. http://dx.doi.org/10.1016/j.cemconres.2010.12.001

Makhloufi, Z., Chettih, M., Bederina, M., Hadj Kadri, E.L., Bouhicha, M. (2015). Effect of quaternary cementitious systems containing limestone, blast furnace slag and natural pozzolan on mechanical behavior of limestone mortars. En: Constr. Build. Mater. 95, 647–657. http://dx.doi.org/10.1016/j.conbuildmat.2015.07.050

McCarter, W.J., Chrisp, T.M., Starrs, G., Adamson, A., Basheer, P.A., Nanukuttan, S.V., Srinivasan, S., Green, C. (2013). Characterization of physio-chemical processes and hydration kinetics in concretes containing supplementary cementitious materials using electrical property measurements. Cement Concrete Res. 50, 26–33. http://dx.doi.org/10.1016/j.cemconres.2013.03.008

NTC 3459 (2001). Agua para la elaboración de concreto, Norma Técnica Colombiana, Icontec Internacional, Bogotá, Colombia.

NTC 121 (2014). Especificación de desempe-o para cemento hidráulico, Norma Técnica Colombiana, Icontec Internacional, Bogotá, Colombia.

Özbay, E., Sahmaran, M., Lachemi, M., Yu.cel, H.E. (2013). Self-Healing of Microcracks in High-Volume Fly-Ash- Incorporated Engineered Cementitious Composites. ACI Mater. J. 110 (1), 3–43.

Pacheco, F., Miraldo, S., Labrincha, J.A., De Brito, J. (2012). An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/ or RAC. Constr. Build. Mater. 36, 141–150. http://dx.doi.org/10.1016/j.conbuildmat.2012.04.066

Schneider, M., Romer, M., Tschudin, M., Bolio, H. (2011). Sustainable cement production—present and future. Cement Concrete Res. 41, 642–650. http://dx.doi.org/10.1016/j.cemconres.2011.03.019

Shaikh, F.U.A., Supit, S.W.M. (2015). Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Constr. Build. Mater. 82, 192–205. http://dx.doi.org/10.1016/j.conbuildmat.2015.02.068

Song, H., Saraswathy, V. (2006). Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag - An overview. J. Hazard. Mater. B138, 226–233. http://dx.doi.org/10.1016/j.jhazmat.2006.07.022

Song, H., Saraswathy, V. (2007). Corrosion Monitoring of Reinforced Concrete Structures - A Review. Int. J. Electrochem. Sci. 2, 1–28.




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es