Precipitation model in microalloyed steels both isothermal and continuous cooling conditions

Authors

  • Sebastián F. Medina Centro Nacional de Investigaciones Metalúrgicas (CENIM) CSIC
  • Alberto Quispe Universidad Jorge Basadre (UNJBG)
  • Manuel Gómez Centro Nacional de Investigaciones Metalúrgicas (CENIM) CSIC

DOI:

https://doi.org/10.3989/revmetalm.056

Keywords:

Austenite, Microalloyed steels, Model, Precipitation kinetics, Strain

Abstract


Niobium and vanadium precipitates (nitrides and carbides) can inhibit the static recrystallization of austenite but this does not happen for Ti, which form nitrides at high temperatures. RPTT diagrams show the interaction between recrystallization and precipitation allowing study the strain induced precipitation kinetics and precipitate coarsening. Based on Dutta and Sellars’s expression for the start of strain-induced precipitation in microalloyed steels, a new model has been constructed which takes into account the influence of variables such as microalloying element percentages, strain, temperature, strain rate and grain size. Recrystallization- Precipitation-Time-Temperature (RPTT) diagrams have been plotted thanks to a new experimental study carried out by means of hot torsion tests on approximately twenty microalloyed steels with different Nb, V and Ti contents. Mathematical analysis of the results recommends the modification of some parameters such as the supersaturation ratio (ks) and constant B, which is no longer a constant but a function of ks. The expressions are now more consistent and predict the Precipitation-Time-Temperature (PTT) curves with remarkable accuracy. The model for strain-induced precipitation kinetics is completed by means of Avrami’s equation. Finally, the model constructed in isothermal testing conditions, it has been converted to continuous cooling conditions in order to apply it in hot rolling.

Downloads

Download data is not yet available.

References

Andrade, H.L., Akben, M.G., Jonas, J.J. (1983). Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels. Metall. Trans. A 14 (10), 1967–1977. http://dx.doi.org/10.1007/BF02662364

Ardell, J. (1972). The effect of volume fraction on particle coarsening: theoretical considerations. Acta Metall. 20 (1), 61–71. http://dx.doi.org/10.1016/0001-6160(72)90114-9

Dutta, B., Sellars, C.M. (1987). Effect of composition and process variables on Nb(C,N) precipitation in niobium microalloyed austenite. Mater. Sci. Technol. 3 (3), 197–207. http://dx.doi.org/10.1179/mst.1987.3.3.197

Dutta, B., Valdes, E., Sellars, C.M. (1992). Mechanisms and kinetics of strain induced precipitation of Nb(C,N) in austenite. Acta Metall. Mater. 40 (4), 653–662. http://dx.doi.org/10.1016/0956-7151(92)90006-Z

Faessel, A. (1976). La Simulation du Laminage par l'essai de Torsión. Rev. Métall. Cah. Inf. Tech. 33 (4), 875–892.

Galán, J., Samek, L., Verleysen, P., Verbeken, K., Houbaert, Y. (2012). Advanced high strength steels for automotive industry. Rev. Metal. 48 (2), 118–131. http://dx.doi.org/10.3989/revmetalm.1158

Gladman, T. (1997). The Physical Metallurgy of Microalloyed Steels. The Institute of Materials, London.

Gómez, M., Medina, S.F., Quispe, A., Valles, P. (2002). Static Recrystallization and Induced Precipitation in a Low Nb Microalloyed Steel. ISIJ Int. 42 (4), 423–431. http://dx.doi.org/10.2355/isijinternational.42.423

Gómez, M., Medina, S.F., Valles, P. (2005). Determination of driving and pinning forces for static recrystallization during hot rolling of a Nb-microalloyed steel. ISIJ Int. 45 (11), 1711–1720. http://dx.doi.org/10.2355/isijinternational.45.1711

Gómez, M., Rancel, L., Medina, S.F. (2009). Effects of Aluminium and nitrogen on static recrystallizationin V- microalloyed steels. Mater. Sci. Eng. A 506 (1–2), 165–173. http://dx.doi.org/10.1016/j.msea.2008.11.049

Kwon, O. (1992). A Technology for the Prediction and control of microstructural changes and mechanical properties in Steel. ISIJ Int. 32 (3), 350–358. http://dx.doi.org/10.2355/isijinternational.32.350

Kwon, O., DeArdo, A.J. (1991). Interactions between recrystallization and precipitation in hot-deformed microalloyed steels. Acta Metall. Mater. 39 (4), 529–538. http://dx.doi.org/10.1016/0956-7151(91)90121-G

Luton, M.J., Dorvel, R., Petkovic, R.A. (1980). Interaction between deformation, recrystallization and precipitation in niobium steels. Metall. Trans. A 11 (3), 411–420. http://dx.doi.org/10.1007/BF02654565

Maugis, P., Gouné, M. (2005). Kinetics of vanadium carbonitride precipitation in steel: A computer model. Acta Mater. 53 (12), 3359–3367. http://dx.doi.org/10.1016/j.actamat.2005.03.036

Medina, S.F., Mancilla, J.E. (1994).The Influence of Titanium on the Static Recrystallization of Hot Deformed Austenite and on Induced Precipitation Kinetics. Scripta Metall. Mater. 30 (1), 73–78. http://dx.doi.org/10.1016/0956-716X(94)90361-1

Medina, S.F., Quispe, A., Valles, P., Ba-os, J.L. (1999). Recrystallization-Precipitation Interaction Study of Two Medium Carbon Niobium Microalloyed Steels. ISIJ Int. 39 (9), 913–922. http://dx.doi.org/10.2355/isijinternational.39.913

Medina, S.F., Vega, M.I., Chapa, M. (2000). Critical Cooling Temperatures (Tnr, Ar3, Ar1) and Phase Transformation Kinetics in Structural Steels Determined by Mean Flow Stress and Dilatometry. Mater. Sci. Technol. 16 (2), 163–170. http://dx.doi.org/10.1179/026708300101507659

Medina, S.F., Quispe, A. (2000). Influence of strain rate on recrystallization-precipitation interaction in V, Nb, V-Ti microalloyed steels. Mater Sci. Technol. 16 (6), 635–642. http://dx.doi.org/10.1179/026708300101508405

Medina, S.F., Gómez, M., Rancel, L. (2008a). Grain refinement by intragranular nucleation of ferrite in a high nitrogen vanadium microalloyed steel. Scripta Mater. 58 (2), 1110–1113. http://dx.doi.org/10.1016/j.scriptamat.2008.02.004

Medina, S.F., Rancel, L., Gómez, M., Ishak, R., de Sanctis, M. (2008b). Intragranular nucleation of ferrite on precipitates and grain refinement in a hot deformed V- microalloyed steel. ISIJ Int. 48 (11), 1603–1608. http://dx.doi.org/10.2355/isijinternational.48.1603

Medina, S.F., Gómez, M., Valles, P., Gómez, P.P. (2010). Effects of TiN and AlN nanoparticles in Hot Deformation of Austenite in Steels. Steel Res. Int. 81 (11), 1010–1015. http://dx.doi.org/10.1002/srin.201000045

Medina, S.F., Quispe, A., Gómez, M. (2014a). Model for strain induced precipitation kinetics in microalloyed steels. Metall. Mater. Trans. A 45 (3), 1524–1539. http://dx.doi.org/10.1007/s11661-013-2068-1

Medina, S.F., Quispe, A., Gómez, M. (2014b). Erratum to: Model for strain-induced precipitation kinetics in microalloyed steels. Metall. Mater. Trans. A 45 (6), 2925–2925. http://dx.doi.org/10.1007/s11661-014-2297-y

Mintz, B., Arrowsmith, J.M. (1980). Influence of microalloting additions on hot ductility of steels in, C.M. Sellars and G.J. Davies (Ed.), Proc. Int. Conf. on Hot Working and Forming Processes, Metal Society, London, 99–103.

Perttula, J.S., Karjalainen, L.P. (1998). Recrystallizationrates in austenite measured by double compression and stress relaxation methods. Mater. Sci. Technol. 14 (7), 626–630. http://dx.doi.org/10.1179/mst.1998.14.7.626

Quispe, A., Medina, S.F., Valles, P. (1997). Recrystallizationinduced precipitation interaction in a medium carbon vanadium microalloyed steel. ISIJ Int. 37 (8), 783–788. http://dx.doi.org/10.2355/isijinternational.37.783

Quispe, A., Medina, S.F., Gómez, M., Chaves, J.I. (2007). Influence of austenite grain size on recrystallization-precipitation interaction in a V-microalloyed steel. Mater. Sci. Eng. A 447 (1–2), 11–18. http://dx.doi.org/10.1016/j.msea.2006.11.036

Sun, W. (2005). Particle coarsening: I. Kinetics for reversible issolution/ deposition controlled process. Acta Mater. 53 (11), 3329–3334. http://dx.doi.org/10.1016/j.actamat.2005.03.050

Turkdogan, E.T. (1989). Causes and effects of nitride and carbonitride precipitation during continuous casting. Iron Steel Making. 16, 61–75.

Vega, M.I., Medina, S.F., Chapa, M., Quispe, A. (1999). Determination of Critical Temperatures (Tnr, Ar3, Ar1) in Hot Rolling Structural Steels with Different Ti and N Contents. ISIJ Int. 39 (12), 1304–1310. http://dx.doi.org/10.2355/isijinternational.39.1304

Published

2015-12-30

How to Cite

Medina, S. F., Quispe, A., & Gómez, M. (2015). Precipitation model in microalloyed steels both isothermal and continuous cooling conditions. Revista De Metalurgia, 51(4), e056. https://doi.org/10.3989/revmetalm.056

Issue

Section

Articles