Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel

Authors

  • B. Vargas-Arista Corporación Mexicana de Investigación en Materiales, Posgrado en Tecnología de la Soldadura Industrial, Ciencia y Tecnología
  • J. M. Hallen Departamento de Ingeniería Metalúrgica
  • A. Albiter Instituto Mexicano del Petróleo
  • C. Ángeles-Chávez Instituto Mexicano del Petróleo

DOI:

https://doi.org/10.3989/revmetalm.0747

Keywords:

Weld metal, Accelerated aging, Toughness, Precipitation, Microalloyed steel

Abstract


The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal of an API5L-X52 linepipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 °C for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractographs that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak-aged. The microstructural analysis indicated the precipitation of transgranular iron nanocarbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior.

Downloads

Download data is not yet available.

References

[1] T. Gladman, The Physical Metallurgy of Miscroallo yed Steels, 1a edición, Ed. The Institute of Materials, Londres, Reino Unido, 1997, pp. 185-211.

[2] L.E. Collins, M. Kostic, T. Lawrence, R.Mackenzie y N. Townley, International Pipeline Conference, Vol. 1, Calgary, Alberta, Canada, 2000, ASME, EE. UU., 2000, pp. 185-191.

[3] U. Sharma y D.G. Ivey, International Pipeline Conference, Vol. 1, Calgary, Alberta, Canada, 2000, ASME, EE. UU., 2000, pp. 193-201.

[4] B. Vargas-Arista, A. Albiter, C. Angeles-Chavez y J.M. Hallen, Metall. Mater. Trans. A 37 (2006) 2.683-2.690.

[5] J. Apraiz-Barreiro, Tratamientos Térmicos de los Aceros, 8a edición, Ed. Dossatt, Madrid, España, 1981, pp. 311-315.

[6] G. Krauss, Heat Treatment and Processing Principles. ASM, Materials Park OH, EE. UU., 1990, pp. 125-130.

[7] B. Vargas-Arista, J.M. Hallen y A. Albiter, Mater. Charact. 58 (2007) 721-729. doi:10.1016/j.matchar.2006.11.004

[8] K. Homma, C. Miki y H. Yang, Eng. Fract. Mech. 59 (1998) 17- 28. doi:10.1016/S0013-7944(97)00100-8

[9] Y. C. Garcés y L.A. Sáenz, IBEROMET-8, Congreso Iberoamericano en Metalurgia y Materiales, Vol. 1, Quito, Ecuador, 2004, Escuela Politécnica Nacional, pp. 478-486.

[10] S.O. Kotrechko, A.Y. Krasowsky, Y.Y. Meshkov y V.M. Torop, Int. J. Pres. Ves. Pip. 81 (2004) 337-344. doi:10.1016/j.ijpvp.2004.02.015

[11] Welding of Pipelines and Related Facilities, 20th Ed., API Standard 1104, American Petroleum Institute, Washington D.C., 2005, pp. 3-15.

[12] Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding, AWS A5.1., American Welding Society, Miami, FL, 2004, pp. 2-4.

[13] Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM Standard E-23, ASTM, West Conshohocken, PA, 2006, pp. 2-8.

[14] Tubería de Acero Para Recolección y Transporte de Hidrocarburos, NRF-001-PEMEX-2007, Petróleos Mexicanos, México, D. F., 2007, pp. 16-21.

[15] M. L. Saucedo-Muñoz, S.I. Komazaki, T. Hashida, T. Shoji y V.M. López-Hirata, Rev. Metal. Madrid 39 (2003) 378-386.

Downloads

Published

2008-12-30

How to Cite

Vargas-Arista, B., Hallen, J. M., Albiter, A., & Ángeles-Chávez, C. (2008). Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel. Revista De Metalurgia, 44(6), 485–492. https://doi.org/10.3989/revmetalm.0747

Issue

Section

Articles