Revista de Metalurgia, Vol 51, No 4 (2015)

Inhibición de la formación de compuestos intermetálicos en juntas aluminio-acero soldadas por fricción-agitación


https://doi.org/10.3989/revmetalm.053

Edwar A. Torres López
Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Materiais (CNPEM) - Universidad de Antioquia (UdeA), Facultad de Ingeniería, Colombia

Antonio J. Ramirez
Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Materiais (CNPEM) - Ohio State University (OSU), Department of Materials Science and Engineering, Estados Unidos

Resumen


La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

Palabras clave


Aporte térmico; Fases deletéreas; FexAly; Juntas disímiles; Soldadura por fricción-agitación

Texto completo:


HTML PDF XML

Referencias


Agudo, L., Eyidi, D., Schmaranzer, C.H., Arenholz, E., Jank, N., Bruckner, J., Pyzalla, A.R. (2007). Intermetallic FexAlyphases in a steel/Al-alloy fusion weld. J. Mater. Sci. 42 (12), 4205–4214. http://dx.doi.org/10.1007/s10853-006-0644-0

Cao, R., Sun, J.H., Chen, J.H., Peichung, W. (2014). Weldability of CMT Joining of AA6061T6 to Boron Steels with Various Coatings. Weld. J. 93 (6), 193s–204s. . .

Cao, R., Yu, G., Chen, J.H., Wang, P.C. (2013). Cold metal transfer joining aluminum alloys-to-galvanized mild steel. J. Mater. Process. Technol. 213 (10), 1753–1763. http://dx.doi.org/10.1016/j.jmatprotec.2013.04.004

Chen, C.M., Kovacevic, R. (2004). Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding. Int. J. Mach. Tools Manuf. 44 (11), 1205–1214. http://dx.doi.org/10.1016/j.ijmachtools.2004.03.011

Fukumoto, M., Yasui, T., Shimoda, Y., Tsubaki, M., Shinoda, T. (2004). Butt welding between dissimilar metals by friction stir welding. Proceedings of the fifth International Friction Stir Welding Symposium, Metz, France.

Chen, T. (2009). Process parameters study on FSW joint of dissimilar metals for aluminum-steel. J. Mater. Sci. 44 (10), 2573–2580. http://dx.doi.org/10.1007/s10853-009-3336-8

Chen, T.P., Lin, W.-B. (2010). Optimal FSW process parameters for interface and welded zone toughness of dissimilar aluminium-steel joint. Sci. Technol. Weld. Joi. 15 (4), 279–285. http://dx.doi.org/10.1179/136217109X12518083193711

Coelho, R.S., Kostka, A., Sheikhi, S., Dos Santos, J.F., Pyzalla, A.R. (2008). Microstructure and mechanical properties of an AA6181-T4 aluminium alloy to HC340LA high strength steel friction stir overlap weld. Adv. Eng. Mater. 10 (10), 961–972. http://dx.doi.org/10.1002/adem.200800028

Idagawa, H.S., Torres, E.A., Ramírez, A.J. (2012). CFD Modeling of Dissimilar Aluminum-Steel Friction Stir Welds. Proceedings of the 9th International Conference, Illinois, USA, pp. 604–610.

Enayati, M.H., Salehi, M. (2005). Formation mechanism of Fe3Al and FeAl intermetallic compounds during mechanical alloying. J. Mater. Sci. 40 (15), 3933–3938. http://dx.doi.org/10.1007/s10853-005-0718-4

Farahat, A.I.Z., El-Badry, S.A. (2009). Effect of high temperature deformation and different cooling rates on microstructure and mechanical properties of Fe-Al alloys. Mater. Sci. Eng. A. 525 (1–2), 48–54. http://dx.doi.org/10.1016/j.msea.2009.06.027

Fernández, M.D.P., Pe-a, J., Lancha, A.M., Perosanz, F.J., Navas, M. (2000). Velocidad de crecimiento de grietas por corrosión bajo tensión en soldaduras disímiles. Rev. Metal. 36 (1), 13–23. http://dx.doi.org/10.3989/revmetalm.2000.v36.i1.529

Furukawa, K. (2006). New CMT arc welding process-welding of steel to aluminum dissimilar metals and welding of superthin aluminum sheets. Weld. Int. 20 (6), 440–445. http://dx.doi.org/10.1533/wint.2006.3598

Girard, M., Huneau, B., Genevois, C., Sauvage, X., Racineux, G. (2010). Friction stir diffusion bonding of dissimilar metals. Sci. Technol. Weld. Joi. 15 (8), 661–665. http://dx.doi.org/10.1179/136217110X12720264008475

Jiang, W.H., Kovacevic, R. (2004). Feasibility study of friction stir welding of 6061-T6 aluminum alloy with AISI 1018 steel. Journal of Engineering Manufacture 218 (10), 1323–1331. http://dx.doi.org/10.1243/0954405042323612

Karfoul, M.K., Tatlock, G.J., Murray, R.T. (2007). The behaviour of Fe and aluminium during the diffusion welding of carbon steel to aluminium. J. Mater. Sci. 42 (14), 5692–5699. http://dx.doi.org/10.1007/s10853-006-0742-z

Lee, W.-B., Schmuecker, M., Mercardo, U.A., Biallas, G., Jung, S.-B. (2006). Interfacial reaction in steel–aluminum joints made by friction stir welding. Scripta Mater. 55 (4), 355–358. http://dx.doi.org/10.1016/j.scriptamat.2006.04.028

Lin, J., Ma, N., Lei, Y., Murakawa, H. (2013). Shear strength of CMT brazed lap joints between aluminum and zinc-coated steel. J. Mater. Process. Technol. 213 (8), 1303–1310. http://dx.doi.org/10.1016/j.jmatprotec.2013.02.011

Morris, D.G., Mu-oz-Morris, M.A. (2005). Intermetálicos: pasado, presente y futuro. Rev. Metal. 41 (Extra), 498–501. http://dx.doi.org/10.3989/revmetalm.2005.v41.iExtra.1084

Murakami, T., Nakata, K., Tong, H., Ushio, M. (2003). Dissimilar metal joining of aluminum to steel by MIG arc brazing using flux cored wire. ISIJ Int. 43 (10), 1596–1602. http://dx.doi.org/10.2355/isijinternational.43.1596

Pickin, C.G., Williams, S.W., Lunt, M. (2011). Characterization of the cold metal transfer (CMT) process and its application for low dilution cladding. J. Mater. Process. Technol. 211 (3), 496–502. http://dx.doi.org/10.1016/j.jmatprotec.2010.11.005

Rajan, S., Shukla, R., Kumar, A., Vyas, A., Brajpuriya, R. (2014). Structural and Morphological Study of a Series of Ball Milled Nanocrystalline Fe1-xAlx (0.3≤×≤0.6) Alloys. J. Mod. Phy. 5, 643–648. http://dx.doi.org/10.4236/jmp.2014.58075

Rathod, M.J., Kutsuna, M. (2004). Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding. Weld. J. 83 (1), 16s–26s.

Santos, T.F., Torres, E.A., Hermengildo, T.F., Ramirez, A.J. (2014). Desenvolvimento de sistema de apoio com depósito cerâmico para soldagem e processamento por atrito com pino não consumível. Soldagem Insp. 19 (2), 104–113. http://dx.doi.org/10.1590/0104-9224/SI1902.02

Sato, Y.S., Urata, M., Iroyuki Kokawa, H. (2002). Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall. Mater. Trans. A. 33 (3), 625–635. http://dx.doi.org/10.1007/s11661-002-0124-3

Shishkovsky, I., Missemer, F., Kakovkina, N., Smurov, I. (2013). Intermetallics Synthesis in the Fe-Al System via Layer by Layer 3D Laser Cladding. Crystals. 3 (4), 517–529. http://dx.doi.org/10.3390/cryst3040517

Soundararajan, V., Kovacevic, R. (2009). Friction stir welding of steel to aluminum alloy. Proceedings of the Sixth International Symposium on Friction Stir Welding, Quebec, Canada, pp. 756–759.

Talalaev, R., Veinthal, R., Laansoo, A., Sarkans, M. (2012). Cold metal transfer (CMT) welding of thin sheet metal products. Est. J. Eng. 18 (3), 243–250. http://dx.doi.org/10.3176/eng.2012.3.09

Tanaka, T., Morishige, T., Hirata, T. (2009). Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scripta Mater. 61 (7), 756–759. http://dx.doi.org/10.1016/j.scriptamat.2009.06.022

Torres, E.A., Ramirez, A.J. (2011). União de Juntas Dissimilares Alumínio-Aço de Chapas Finas pelo Processo de Soldagem por Atrito com Pino não Consumível (SAPNC). Soldagem Insp. 16 (3), 265–273. http://dx.doi.org/10.1590/s0104-92242011000300008

Torres, E.A., Ramírez, A.J. (2013). Efeito dos Parâmetros de Processo na Obtenção e na Microestrutura de Juntas Alumínio- Aço Realizadas Mediante Soldagem por Atrito com Pino não Consumível (SAPNC). Soldagem Insp. 18 (3), 245–256. http://dx.doi.org/10.1590/S0104-92242013000300007

Uzun, H., Donne, C.D., Argagnotto, A., Ghidini, T., Gambaro, C. (2005). Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel. Mater. Design. 26 (1), 41–46. http://dx.doi.org/10.1016/j.matdes.2004.04.002

Wang, J., Feng, J.C., Wang, Y.X. (2008). Microstructure of Al–Mg dissimilar weld made by cold metal transfer MIG welding. Mater. Sci. Technol. 24 (7), 827–831. http://dx.doi.org/10.1179/174328408X278411

Wang, J., Li, Y., Liu, P. (2003). XRD and TEM analysis on the Fe3Al/18-8 stainless steel diffusion bonded interface. Mater. Lett. 57 (26–27), 4323–4327. http://dx.doi.org/10.1016/S0167-577X(03)00311-2

Wang, Q., Leng, X.S., Yang, T.H., Yan, J.C. (2014). Effects of Fe-Al intermetallic compounds on interfacial bonding of clad materials. Trans. Nonferr. Metal. Soc. 24 (1), 279–284. http://dx.doi.org/10.1016/S1003-6326(14)63058-2

Watanabe, T., Takayama, H., Yanagisawa, A. (2006). Joining of aluminum alloy to steel by friction stir welding. J. Mater. Process. Technol. 178 (1–3), 342–349. http://dx.doi.org/10.1016/j.jmatprotec.2006.04.117

Wei, L.Y., Nelson, T.W. (2011). Correlation of microstructures and process variables in FSW HSLA-65 steel. Weld. J. 90 (5), 95–101.

Xue, P., Xiao, B.L., Ni, D.R., Ma, Z.Y. (2010). Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Mater. Sci. Eng. A. 527 (21–22), 5723–5727. http://dx.doi.org/10.1016/j.msea.2010.05.061

Yasui, T., Ishii, T., Shimoda, Y., Tsubaki, M., Fukumoto, M., Shinoda, T. (2004). Friction stir welding between aluminum and steel with high welding speed. Proceedings of the Fifth International Friction Stir Welding Symposium, Metz, France.

Zhang, G., Su, W., Zhang, J., Wei, Z. (2011). Friction Stir Brazing: a Novel Process for Fabricating Al/Steel Layered Composite and for Dissimilar Joining of Al to Steel. Metall. Mater. Trans. A. 42 (9), 2850–2861. http://dx.doi.org/10.1007/s11661-011-0677-0

Zhang, H.T., Feng, J.C., Peng, H. (2008). Interfacial phenomena of cold metal transfer (CMT) welding of zinc coated steel and wrought aluminum. Mater. Sci. Technol. 24 (11), 1346–1349. http://dx.doi.org/10.1179/174328407X213152

Zhang, H.T., Feng, J.C., He, P., Zhang, B.B., Chen, J.M., Wang, L. (2009). The arc characteristics and metal transfer behavior of cold metal transfer and its use in joining aluminum to zinc-coated steel. Mat. Sci. Eng. A-Struct. 499 (1), 111–113. http://dx.doi.org/10.1016/j.msea.2007.11.124




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es