Effect of pulsed current in the welding process of 6AL4V in titanium with and without filler metal

Authors

  • Celso E. Cruz-González Centro de Ingeniería y Desarrollo Industrial. Sistemas Dinámicos y Transferencia
  • Héctor I. Gala-Barrón Centro de Ingeniería y Desarrollo Industrial. Sistemas Dinámicos y Transferencia
  • José D. Mosquera-Artamonov Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica,
  • Hugo Gámez-Cuatzin Centro de Ingeniería y Desarrollo Industrial. Sistemas Dinámicos y Transferencia

DOI:

https://doi.org/10.3989/revmetalm.071

Keywords:

Current, Design of experiments, GTAW, Mechanical testing, Titanium

Abstract


In this work the influence of the current is determined, the pulsed current with 20 and 50 Hz frequency in the mechanical properties, microstructure and wide lace GTAW (Gas Tungsten Arc Welding) welding process 6AL4V titanium 1.6 mm thick. Full factorial design experiments with three replicates was perform. In the experimental design factors such as the use of input and frequency they were analyzed. Two metal levels for the contribution factor whose maximum level is the use of input and minimal unused filler were considered. In the case of the frequency, three levels were use as minimum is DC, 20 Hz is a central and 50 Hz as maximum level. Mechanical tensile tests performed 500 g Vickers microhardness and macro and micrographs of the welded joints. It was found that the mechanical properties of the affected joint are significantly (P < 0.05 value) with respect to frequency using both filler metal and without the use of this. The face width and root decreased when a change of current at 20 Hz occurred, while 20 to 50 Hz do not show a significant change.

Downloads

Download data is not yet available.

References

ASTM B265-11 (2011). Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate. American Society for Testing Materials.

ASTM E3-11 (2011). Standard Guide for Preparation of Metallographic Specimens. American Society for Testing Materials.

ASTM E384-11 (2011). Standard Test Method for Knoop and Vickers Hardness of Materials. American Society for Testing Materials.

ASTM E8/E8M-11 (2011). Standard Test Methods for Tension Testing of Metallic Materials. American Society for Testing Materials.

ASTM E1086-08 (2008). Standard Test Method for Analysis of Austenitic Stainless Steel by Spark Atomic Emission Spectrometry. American Society for Testing Materials.

AWS A5.16/A5.16M (2007). Specification for Titanium and Titanium Alloy Welding Electrodes and Rods. 5th Edition, American Welding Society.

AWS/ANSI D17.1/D17.1M (2010). Specification for Fusion Welding for Aerospace Applications. American Welding Society.

Baeslack, W. (2010). Selection of Non Ferrous Low-Temperature Materials. In Welding, Brazing and Soldering, Vol. 6, American Materials Society, Ohio, USA, pp. 507–554.

Balachandar, K., Subramanya Sarma, V., Pant, B., Phanikumar, G. (2009). Microstructure and Mechanical Properties of Gas-Tungsten-Arc–Welded Ti-15-3 Beta Titanium Alloy. Metall. Mater. Trans. A 40 (11), 2685–2693. http://dx.doi.org/10.1007/s11661-009-9952-8

Balasubramanian, M., Jayabalan, V., Balasubramanian, V. (2007). Response Surface Approach to Optimize the Pulsed Current Gas Tungsten Arc Welding Parameters of Ti-6Al-4V Titanium Alloy. Met. Mater. Int. 13 (4), 335–344. http://dx.doi.org/10.1007/BF03027891

Balasubramanian, V., Ravisankar, V., Madhusudhan Reddy, G. (2008). Effect of pulsed current welding on mechanical properties of high strength aluminum alloy. Int. J. Adv. Manuf. Technol. 36 (3), 254–262. http://dx.doi.org/10.1007/s00170-006-0848-0

Cruz, C., Hiyane, G., Mosquera-Artamonov, J.D., Salgado, J.M. (2014). Optimización del proceso de soldadura GTAW en placas de Ti6Al4V. Soldag. Insp. São Paulo 19 (1), 2–9. http://dx.doi.org/10.1590/S0104-92242014000100002

Gordienko, A.I., Dymovskii, A.S., Kozina, I.Y. (1991). Correlation of grain-structure parameters with the properties of thermally strengthened titanium alloys VT6 and VT23. Met. Sci. Heat Treat. 33 (2), 137–141. http://dx.doi.org/10.1007/BF00773891

Greenfield, M.A., Duvall, D.S. (1975). Welding of an Advanced High strenght titanium alloys. Weld. Res. Suppl. (March), 73s-85s.

Hallum, D.L., Baeslack, W.A. (1990). Nature of Grain Refinement in Titanium Alloy Welds by Microcooler Inoculation. Weld. Res. Suppl. (September), 326s–336s.

Kumar, P., Datta, C.K. (2012). Pulsed Parameters Optimization of GTAW Process for Mechanical Properties of Ti-6Al-4V Alloy using Taguchi Method. IJESIT 1 (1), 75–80.

Lutjering, G. (1998). Influence of processing on microstructure and mechanical properties of (ab) titanium alloys. Mat. Sci. Eng. A-Struct 243 (1-2), 32–45. http://dx.doi.org/10.1016/S0921-5093(97)00778-8

Milek, W., Dickerson, P., Rager, D., Sanders Jr, W. (1991). Design for Welding. In Welding Handbook, Vol. 1, American Welding Society, Miami, USA, pp. 126–192.

Mingxang, Y., Bojin, Q., Baoqiang, C., Fangjun, L., Zhou, Y. (2013). Effect of pulse frequency on microstructure and properties of Ti-6Al-4V by ultrahigh-frequency pulse gas tungsten arc welding. Int. J. Adv. Manuf. Tech. 68 (1), 19–31.

Montgomery, D. (2004). Diseño y Análisis de Experimentos, 2da Ed., Limusa S.A., pp. 427–466.

Padmanaban, G., Balasubramanian, V. (2011). Influences of Pulsed Current Parameters on Mechanical and Metallurgical Properties of Gas Tungsten Arc Welded AZ31B Magnesium Alloy. Met. Mater. Int. 17 (4), 679–687. http://dx.doi.org/10.1007/s12540-011-0826-4

Saedi, H.R., Unkel, W. (1988). Arc and Weld Pool Behavior for Pulsed Current GTAW. Weld. Res. Suppl. (November), 247s–255s.

Wang, S., Wei, M. (2004). Tensile properties of gas tungsten arc weldments in commercially pure titanium, Ti-6Al-4V and Ti-15V 3Al-3Sn-3Cr alloys at different strain rates. Sci. Technol. Weld. Joi. 9 (5), 415–422. http://dx.doi.org/10.1179/136217104225021599

Yunlian, Q., Ju, D., Quan, H., Liying, Z. (2000). Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mater. Sci. Eng. A-Struct. 280 (1), 177–181. http://dx.doi.org/10.1016/S0921-5093(99)00662-0

Published

2016-09-30

How to Cite

Cruz-González, C. E., Gala-Barrón, H. I., Mosquera-Artamonov, J. D., & Gámez-Cuatzin, H. (2016). Effect of pulsed current in the welding process of 6AL4V in titanium with and without filler metal. Revista De Metalurgia, 52(3), e071. https://doi.org/10.3989/revmetalm.071

Issue

Section

Articles