Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds

Authors

  • Joaquín M. Piccini Universidad de Buenos Aires, Facultad de Ingeniería, Laboratorio de Materiales y Estructuras, INTECIN, Grupo de Tecnología de la Soldadura https://orcid.org/0000-0001-7968-3382
  • Hernán G. Svoboda Universidad de Buenos Aires, Facultad de Ingeniería, Laboratorio de Materiales y Estructuras, INTECIN, Grupo de Tecnología de la Soldadura - Consejo Nacional de Investigaciones Científicas y Técnicas https://orcid.org/0000-0001-7539-8306

DOI:

https://doi.org/10.3989/revmetalm.090

Keywords:

Aluminum alloys, Dissimilar welding, Friction Stir Spot Welding, Peel test

Abstract


In the last years, the automotive industry is looking for the use of aluminum parts in replace of steel parts in order to reduce the vehicles weight. These parts have to be joined, for instance, by welding processes. The more common welding process in the automotive industry is the Resistance Spot Welding (RSW) technique. However, RSW of aluminum alloys has many disadvantages. Regarding this situation, a variant of the Friction Stir Welding process called Friction Stir Spot Welding (FSSW) has been developed, showing a strong impact in welding of aluminum alloys and dissimilar materials in thin sheets. Process parameters affect the characteristics of the welded joints. However, the information available on this topic is scarce, particularly for dissimilar joints and thin sheets. The aim of this work was to study the effect of the rotational speed and the tool penetration depth on the characteristics of dissimilar FSS welded joints. Defects free joints have been achieved with higher mechanical properties than the ones reported. The maximum fracture load was 5800 N. It was observed that the effective joint length of the welded spots increased with the tool penetration depth, meanwhile the fracture load increased and then decreased. Finally, welding at 1200 RPM produced welded joints with lower mechanical properties than the ones achieved at 680 and 903 RPM.

Downloads

Download data is not yet available.

References

ASTM E384 (2009). Standard Test Method for Microindentation Hardness of Materials, ASTM, USA.

Bozkurt, Y., Bilici, M. (2013). Application of Taguchi approach to optimize of FSSW parameters on joint properties of dissimilar AA2024-T3 and AA5754-H22 aluminum alloys. Mater. Design 51, 513–521. https://doi.org/10.1016/j.matdes.2013.04.074

Chowdhury, S., Chen, D., Bhole, S., Cao, X., Wanjara, P. (2012). Lap shear strength and fatigue life of friction stir spot welded AZ31 magnesium and 5754 aluminum alloys. Mater. Sci. Eng. A. 556, 500–509. https://doi.org/10.1016/j.msea.2012.07.019

Cox, C., Gibson, B., Strauss, A., Cook, G. (2014). Energy input during friction stir spot welding. J. Manuf. Process. 16 (4), 479–484. https://doi.org/10.1016/j.jmapro.2014.05.007

European Aluminium Association (2015). The Aluminium Automotive Manual, http://c.ymcdn.com/sites/www.aec.org/resource/resmgr/PDFs/1-Intro_2015.pdf [accessed 26. 06.15].

Ferjutz, K., Davis, J.R. (1993). Metal Handbook. Welding Brazing and Soldering. Vol. 6, ASM International, USA.

Francesco, L., Svoboda, H. (2013). Efecto de las variables de proceso de Soldadura de Punto por Fricción Agitación (FSSW) de aluminio en las propiedades mecánicas. FIUBA, Buenos Aires, Argentina.

Hirasawa, S., Badarinarayan, H., Okamoto, K., Tomimura, T., Kawanami, T. (2010). Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J. Mater. Process. Technol. 210 (11), 1455–1463. https://doi.org/10.1016/j.jmatprotec.2010.04.003

Jenney, C.L., O'Brien, L. (2001). Welding Handbook. Welding Science and Technology, Vol. 1, ASM International, USA.

Jeon, C., Hong, S., Kwon, Y., Cho, H., Han, H. (2012). Material properties of friction stir spot welded joints of dissimilar aluminum alloys. Trans. Nonferrous Met. Soc. China. 22 (3), s605?s613. https://doi.org/10.1016/s1003-6326(12)61772-5

Kou, S. (2003). Welding Metallurgy. Second Edition, John Wiley & Sons, Hoboken, Canadá.

Lathabai, S., Painter, M., Cantin, G., Tyagi, V. (2006). Friction spot joining of an extruded Al–Mg–Si alloy. Scripta Mater. 55 (10), 899–902. https://doi.org/10.1016/j.scriptamat.2006.07.046

Lohwasser, D., Chen, Z. (2010). Friction Stir Welding. From basics to applications. Woodhead Publishing Limited, Oxford Cambridge. https://doi.org/10.1533/9781845697716

Mishra, R., Mahoney, M. (2007). Friction Stir Welding and Processing. ASM International, Materials Park, Ohio.

Pereira, A., Ferreira, J., Loureiro, A., Costa, J., Bártolo, P. (2010). Effect of process parameters on the strength of resistance spot welds in 6082-T6 aluminium alloy. Mater. Design 31 (5), 2454–2463. https://doi.org/10.1016/j.matdes.2009.11.052

Piccini, J., Svoboda, H. (2015a). Effect of the tool penetration depth in Friction Stir Spot Welding (FSSW) of dissimilar aluminum alloys. Proc. Mat. Sc. 8, 868–877. https://doi.org/10.1016/j.mspro.2015.04.147

Piccini, J., Svoboda, H. (2015b). Effect of pin length on Friction Stir Spot Welding (FSSW) of dissimilar Aluminum-Steel joints. Proc. Mat. Sc. 9, 504–513. https://doi.org/10.1016/j.mspro.2015.05.023

Rao, H., Yuan, W., Badarinarayan, H. (2015). Effect of process parameters on mechanical properties of friction stir spot welded magnesium to aluminum alloys. Mater. Design 66 (Part A), 235–245. https://doi.org/10.1016/j.matdes.2014.10.065

Shome, M., Tumuluru, M. (2015). Welding and Joining of Advanced High Strength Steels (AHSS). Elsevier, Cambridge, UK. https://doi.org/10.1016/b978-0-85709-436-0.00001-1

Tozaki, Y., Uematsu, Y., Tokaji, K. (2007). Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminum alloys. Int. J. Mach. Tool. Manu. 47 (15), 2230–2236. https://doi.org/10.1016/j.ijmachtools.2007.07.005

Tran, V., Pan, J., Pan, T. (2009). Effects of processing time on strengths and failure modes of dissimilar spot friction welds between aluminum 5754-O and 7075-T6 sheets. J. Mater. Process. Technol. 209 (8), 3724–3739. https://doi.org/10.1016/j.jmatprotec.2008.08.028

Vander Voort, G.F. (2004). Metal Handbook. Metallography and Microstructures, Vol. 9, ASM International, USA.

Wang, D.-A., Lee, S.-C. (2007). Microstructures and failure mechanisms of frictions stir spot welds of aluminum 6061-T6 sheets. J. Mater. Process. Technol. 186 (1-3), 291–297. https://doi.org/10.1016/j.jmatprotec.2006.12.045

Yang, Q., Mironov, S., Sato, Y., Okamoto, K. (2010). Material flow during friction stir spot welding. Mat. Sci. Eng. A 527 (16-17), 4389–4398. https://doi.org/10.1016/j.msea.2010.03.082

Yuan, W., Mishra, R., Webb, S., Chen, Y., Carlson, B., Herling, D., Grant, G. (2011). Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. J. Mater. Process. Technol. 211 (6), 972–977. https://doi.org/10.1016/j.jmatprotec.2010.12.014

Zhang, Z., Yang, X., Zhang, J., Zhou, G., Xu, X., Zou, B. (2011). Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy. Mater. Design 32, 4461–4470. https://doi.org/10.1016/j.matdes.2011.03.058

Published

2017-03-30

How to Cite

Piccini, J. M., & Svoboda, H. G. (2017). Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds. Revista De Metalurgia, 53(1), e090. https://doi.org/10.3989/revmetalm.090

Issue

Section

Articles