Revista de Metalurgia, Vol 53, No 1 (2017)

Posibilidades de reutilización de la chatarra de acero para la obtención de cuchillas para cortar

Nada Štrbac
University of Belgrade, Serbia

Ivana Marković
University of Belgrade, Serbia

Aleksandra Mitovski
University of Belgrade, Serbia

Ljubiša Balanović
University of Belgrade, Serbia

Dragana Živković
University of Belgrade, Serbia

Vesna Grekulović
University of Belgrade, Serbia


El trabajo presenta los resultados de la caracterización de diversos tipos de aceros que han llegado al final de su ciclo de vida útil, y de los que se desconocía su composición química, propiedades mecánicas y tratamiento termomecánico aplicado previamente. El estudio se realizó con el objetivo de analizar las posibilidades de reutilización de algunos de estos materiales en aplicaciones agrícolas e industriales, obteniendo hojas de corte. Las formas exigidas a las hojas de corte se consiguieron aplicando diversos tipos de tratamientos termomecánicos. El análisis químico de la chatarra de acero de acero se realizó utilizando Energías Dispersivas de Rayos X. La microestructura se estudió utilizando Microscopía Óptica y Microscopía Electrónica de Barrido. La dureza de la chatarra de acero y de las cuchillas obtenidas se midió utilizando la escala Rockwell C. Los valores de dureza de las cuchillas obtenidas indican una buena selección de los productos finales de acero.

Palabras clave

Chatarra de acero; Cuchilla; Dureza; Microestructura

Texto completo:



Bramfitt, L., Brenscoter, A.O. (2002). Metallographer's Guide. Practices and Procedures for Irons and Steels, ASM International, Materials Park, Ohio, USA.

Chen, H.C., Era, H., Shimizu, M. (1989). Effect of phosphorus on the formation of retained austenite and mechanical properties in Si–containing low–carbon steel sheet. Metall. Trans. A 20 (3), 437–445.

Cooper, D.R., Allwood, J.M. (2012). Reusing steel and aluminum components at end of product life. Environ. Sci. Technol. 46 (18), 10334?10340.

Da Silva Rocha, A., Strohaecker, T., Tomala, V., Hirsch, T. (1999). Microstructure and residual stresses of a plasma–nitrided M2 tool steel. Surf. Coat. Tech. 115 (1), 24–31.

Dziedzic, A. (2007). Microstructure of remelted zone of HS 6–5–2 high speed steel. Arch. Foundry. Eng. 7 (3), 43–46.

EN ISO 4957 (1999). Tool steels. International Organization for Standardization.

EN 10250–2 (2000). Open steel die forgings for general engineering purposes – Part 2: Non–alloy quality and special steels. CEN, Brussels.

EN 10089 (2002). Hot rolled steels for quenched and tempered springs – Technical delivery conditions. CEN, Brussels.

Gooch, D.J. (1982). Creep fracture of 12Cr–Mo–V steel. Met. Sci. 16 (2), 79–89.

Goune, M., Danoix, F., Argren, J., Brechet, Y., Hutchinson, C.R., Militzer, M., Purdy, G., Van der Zwaag, S., Zurob, H. (2015). Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels. Mater. Sci. Eng. R. 92, 1–38.

Gupta, K.M. (2015). Engineering Materials. Research, Applications and Advances, CRC Press, Boca Raton, Florida, USA.

ISO 683–14 (2004). Heat–treatable steels, alloy steels and free–cutting steels – Part 14: Hot–rolled steels for quenched and tempered springs. International Organization for Standardization.

Kumar, A., Bhushan, B. (2015). Nanomechanical, nanotribological and macrotribological characterization of hard coatings and surface treatment of H–13 steel. Tribol. Int. 81, 149–158.

Leskovsek, V., Ule, B. (1998). Improved vacuum heat–treatment for fine–blanking tools from high–speed steel M2. J. Mater. Process. Tech. 82 (1–3), 89–94.

Mann, B.S. (2013). Laser treatment of textured X20Cr13 stainless steel to improve water droplet erosion resistance of LPST blades and LP bypass valves. J. Mater. Eng. Perform. 22 (12), 3699–3707.

Masters, J.E. (1989). Fractography of Modern Engineering Materials: Composites and Metals, Volume 1, ASTM, Baltimore, USA.

Matsumura, O., Sakuma, Y., Takechi, H. (1987). Enhancement of elongation by retained intercritical annealed 0.4C–1.5Si–0.8Mn austenite in steel. T. Iron Steel I. Jpn. 27 (7), 570–579.

Morfeldt, J., Nijs, W., Silveira, S. (2015). The impact of climate targets on future steel production – an analysis based on a global energy system model. J. Clean. Prod. 103, 469–482.

Oda, J., Akimoto, K., Tomoda, T. (2013). Long–term global availability of steel scrap. Resour. Conserv. Recy. 81, 81–91.

Pacelli, F., Ostuzzi, F., Levi, M. (2015). Reducing and reusing industrial scraps: a proposed method for industrial designers. J. Clean. Pro. 86, 78–87.

Qinghua, Z., Jinping, W., Hujian (2003). Nonequilibrium lever principle and new type of dynamic phase diagrams for Si2Mn–type steel. Met. Sci. Heat Treat. 45 (11), 415–418.

Small, K., Englehart, D., Christman, T. (2008). Guide to etching specialty alloys. Adv. Mater. Process. 166 (2), 32–37.

Vehlow, J., Bergfeldt, B., Visser, R., Wilén, C. (2007). European Union waste management strategy and the importance of biogenic waste. J. Mater. Cycles. Waste Manag. 9 (2), 130–139.

Xi, Y., Liu, D., Han, D. (2008). Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature. Surf. Coat. Tech. 202 (12), 2577–2583.

Zeng, Y., Mu, S., Wu, P., Ong, K.P., Zhang, J. (2009). Relative effects of all chemical elements on the electrical conductivity of metal and alloys: An alternative to Norbury–Linde rule. J. Alloy. Compd. 478 (1-2), 345–354.

Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

Contacte con la revista

Soporte técnico