Revista de Metalurgia, Vol 53, No 3 (2017)

Propiedades eléctricas de las aleaciones ternarias Bi-Ge-Sb y Al-Cu-Sb


https://doi.org/10.3989/revmetalm.098

Milena Premovic
University in Priština, Faculty of Technical Science, Serbia
orcid http://orcid.org/0000-0003-0532-7048

Duško Minić
University in Priština, Faculty of Technical Science, Serbia
orcid http://orcid.org/0000-0002-0432-6038

Milan Kolarevic
University of Kragujevac, Faculty of Mechanical and Civil Engineering, Serbia
orcid http://orcid.org/0000-0001-6521-5035

Dragan Manasijevic
University of Belgrade, Technical Faculty, Serbia
orcid http://orcid.org/0000-0002-7828-8994

Dragana Živković
University of Belgrade, Technical Faculty, Serbia
orcid http://orcid.org/0000-0002-2745-5676

Aleksandar Djordjevic
University in Priština, Faculty of Technical Science, Serbia
orcid http://orcid.org/0000-0002-5136-7019

Dusan Milisavljevic
University in Priština, Faculty of Technical Science, Serbia
orcid http://orcid.org/0000-0003-0598-2392

Resumen


Este artículo presenta el estudio de las propiedades eléctricas de dos sistemas ternarios basados en antimonio, Bi-Ge-Sb y Al-Cu-Sb. Además de las propiedades eléctricas, en el artículo se presenta las microestructuras observadas por microscopía óptica. Se utilizaron cuatro muestras para el análisis de la microestructura utilizando MEB, EDS y DRX. Además, se determinó la microdureza de muestras seleccionadas de la aleación ternaria Bi-Ge-Sb, la dureza se determinó utilizando ensayos Vickers.

Palabras clave


Conductividad eléctrica; Dureza; Materiales de muestra; Microestructura

Texto completo:


HTML PDF XML

Referencias


Barrett, C.S., Cucka, P., Haefner, K. (1963). The crystal structure of antimony at 4.2, 78 and 298° K. Acta Crystallogr. 16, 451-453. https://doi.org/10.1107/S0365110X63001262

Bech, J., Corrales, I., Tume, P., Barceló, J., Duran, P., Roca, N., Poschenrieder, C. (2012). Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees). J. Geochem. Explor. 113, 100-105. https://doi.org/10.1016/j.gexplo.2011.06.006

Box, G., Draper, N. (2006). Response Surfaces, Mixtures, and Ridge Analyses. 2nd Ed., John Wiley and Sons, Inc., New Jersey.

Cornell, J.A. (1990). Experiments with Mixtures. Designs, Models, and the Analysis of Mixtures Data. 2nd Ed., John Wiley and Sons, Inc., New York. PMCid:PMC54465

Cucka, P., Barrett, C.S. (1962). The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi. Acta Crystallogr. 15, 865-872. https://doi.org/10.1107/S0365110X62002297

Cui, X.D., Wang, Y.J., Hockmann, K., Zhou, D.M. (2015). Effect of iron plaque on antimony uptake by rice (Oryza sativa L.). Environ. Pollut. 204, 133-140. https://doi.org/10.1016/j.envpol.2015.04.019 PMid:25947970

Gierlotka, W. (2014). A new thermodynamic description of the binary Sb-Zn system. J. Min. Metall. Sect. B-Metall. B 50 (2), 149-155. https://doi.org/10.2298/JMMB131103020G

Guo, C., Li, C., Du, Z. (2016). Thermodynamic modeling of the Ga–Pt–Sb system. Calphad 52, 169-179. https://doi.org/10.1016/j.calphad.2016.01.001

Gray, T., Mann, N., Whitby, M. (2013). Electrical Conductivity of the elements. Available at http://periodictable.com/Properties/A/ElectricalConductivity.an.html (accesses 24.01.2016).

He, M., Wang, X., Wu, F., Fu, Z. (2012). Antimony pollution in China. Sci. Total Environ. 421-422, 41-50. https://doi.org/10.1016/j.scitotenv.2011.06.009 PMid:21741676

Illescas, S., Fernández, J., Asensio, J., Sánchez-Soto, M., Guilemany, J.M. (2009). Study of the mechanical properties of low carbon content HSLA steels. Rev. Metal. 45 (6), 424-431. https://doi.org/10.3989/revmetalm.0902

Johnson, C.A., Moench, H., Wersin, P., Kugler, P., Wenger, C. (2005). Solubility of antimony and other elements in samples taken from shooting ranges. J. Environ. Qual. 34 (1), 248-254. PMid:15647555

Kolarevic, M. (2004). Rapid product development. Ed. Foundation Andrejevic, Belgrad. PMid:15109152

Lazic, ?. (2004). Design of Experiments in Chemical Engineering: Practical Guide. Ed. Wiley-VCH Verlag GmbH & Co.KGaA, Weiheim, Alemania.

Liu, Y., Xu, J., Kang, Z., Wang, J. (2013). Thermodynamic descriptions and phase diagrams for Sb–Na and Sb–K binary systems. Thermochim. Acta 569, 119-126. https://doi.org/10.1016/j.tca.2013.07.009

Macgregor, K., MacKinnon, G., Farmer, J., Graham, M. (2015). Mobility of antimony, arsenic and lead at a former antimony mine, Glendinning, Scotland. Sci. Total Environ. 529, 213-222. https://doi.org/10.1016/j.scitotenv.2015.04.039 PMid:26011617

Mini?, D., Premovi?, M., Cosovi?, V., Manasijevi?, D., ?ivkovi?, D., Kostov, A., Talijan, N., (2013). Experimental investigation and thermodynamic calculations of the Al–Cu–Sb phase diagram. J. Alloy Compd. 555, 347-356. https://doi.org/10.1016/j.jallcom.2012.12.059

Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M. (2009). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 3rd Ed., John Wiley and Sons, New Jersey, p. 704.

Pearson, W.B. (1985). The Cu2Sb and related structures. Z. Kristallogr. 171, 23-39.

Pierart, A., Shahid, M., Séjalon-Delmas, N., Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater. 289, 219-234. https://doi.org/10.1016/j.jhazmat.2015.02.011 PMid:25726907

Premovic, M., Mini?, D., Cosovi?, V., Manasijevi?, D., ?ivkovi?, D. (2014). Experimental investigation and thermodynamic calculations of the Bi-Ge-Sb phase diagram. Metall. Mater. Trans. A 45(11), 4829-4841. https://doi.org/10.1007/s11661-014-2445-4

Serrano, N., Díaz-Cruz, J.M., Ari-o, C., Esteban, M. (2016). Antimony- based electrodes for analytical determinations. Trends Analyt. Chem. 77, 203-213. https://doi.org/10.1016/j.trac.2016.01.011

Sun, W., Xiao, E., Dong, Y., Tang, S., Krumins, V., Ning, Z., Sun, M., Zhao, Y., Wu, S., Xiao, T., (2016). Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Sci. Total Environ. 550, 297-308. https://doi.org/10.1016/j.scitotenv.2016.01.090 PMid:26820933

Swanson, H.E., Tatge, E. (1953). Standard X-ray diffraction powder patterns. Vol. 1, National Bureau of Standards, USA, pp. 1-95.

Verbeken, K., Infante-Danzo, I., Barros-Lorenzo, J., Schneider, J., Houbaert, Y. (2010). Innovative processing for improved electrical steel properties. Rev. Metal. 46(5), 458-468. https://doi.org/10.3989/revmetalm.1010

Vinhal, J., Gonçalves, A., Cruz, G., Cassella, R. (2016). Speciation of inorganic antimony (III & V) employing polyurethane foam loaded with bromopyrogallol red. Talanta 150, 539-545. https://doi.org/10.1016/j.talanta.2015.12.080 PMid:26838441

Westman, S. (1965). Refinement of the gamma - Cu9Al4 structure. Acta Chem. Scand. 19, 1411-1419. https://doi.org/10.3891/acta.chem.scand.19-1411

Woolley, J.C., Smith, B.A. (1958). Solid solution in A(III) B(V)compounds. Proc. Phys. Soc. 72(2), 214-223. https://doi.org/10.1088/0370-1328/72/2/306

Zobac, O., Sopou?ek, J., Kroupa, A. (2015). Calphad-type assessment of the Sb–Sn–Zn ternary system. Calphad 51, 51-56. https://doi.org/10.1016/j.calphad.2015.08.002




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es