Revista de Metalurgia, Vol 53, No 3 (2017)

Ciclo térmico y soldabilidad de las aleaciones de aluminio


https://doi.org/10.3989/revmetalm.103

José L. Meseguer-Valdenebro
Departamento de Física Aplicada e Ingeniería de Materiales, ETSII, Universidad Politécnica de Madrid, España
orcid http://orcid.org/0000-0001-8675-373X

Antonio Portolés
Departamento de Física Aplicada e Ingeniería de Materiales, ETSII, Universidad Politécnica de Madrid, España
orcid http://orcid.org/0000-0003-1224-0821

Eusebio Martínez-Conesa
Departamento de Tecnología de Edificación, Universidad Politécnica de Cartagena (UPCT), España
orcid http://orcid.org/0000-0002-2864-7012

Resumen


Las aleaciones de aluminio se caracterizan por su bajo peso y elevada resistencia mecánica, aunque no presentan buenas propiedades mecánicas cuando son soldadas mediante arco eléctrico a excepción de las aleaciones de la serie 5XXX y serie 6XXX. En este trabajo se realiza una revisión sobre el estado del arte del ciclo térmico y la soldabilidad de las aleaciones de aluminio, mostrando las diferentes reacciones de solidificación y la influencia que presenta la velocidad de enfriamiento en las aleaciones de aluminio representado mediante las curvas de enfriamiento, evaluando su influencia sobre las propiedades mecánicas de la unión soldada.

Palabras clave


Aleación; Aluminio; Ciclo térmico; Soldabilidad

Texto completo:


HTML PDF XML

Referencias


Akbari, M., Sinton, D., Bahrami, M. (2011). Geometrical Effects on the Temperature Distribution in a Half-Space Due to a Moving Heat Source. J. Heat Transfer. 133 (6), 064502. https://doi.org/10.1115/1.4003155

Ambriz, R.R., Barrera, G., García, R., López, V.H. (2009). Effect of the weld thermal cycles by the modified indirect electric arc (MIEA) on the mechanical properties of the AA6061-T6 alloy. Rev. Metal. 45 (1), 42–51. https://doi.org/10.3989/revmetalm.0801

Ardell, A.J. (1985). Precipitation hardening. Metal. Trans. A. 16 (12), 2131–2165. https://doi.org/10.1007/BF02670416

Arivazhagan, B., Vasudevan, M.J. (2013). A Study of Microstructure and Mechanical Properties of Grade 91 Steel A-TIG Weld Joint. J. Mater. Eng. Perform. 22 (12), 3708–3716. https://doi.org/10.1007/s11665-013-0694-9

ASTM International (1998). Metal Handbook. Ed. Joseph R. Davis, Taylor & Francis, Materials Park, OH, USA.

ASTM A255-10 (2014), Standard Test Methods for Determining Hardenability of Steel, ASTM International, West Conshohocken, PA, USA.

Avrami, M. (1939a). A method for the direct determination of crystal structure from X-ray Data. Z. Krist. Cryst. St. 100 (1–63), 381–393.

Avrami, M. (1939b). Kinetics of Phase Change. I General Theory. J. Chem. Phys. 7 (12), 1103–1112. https://doi.org/10.1063/1.1750380

Balasubramanian, K., Balusamy, V. (2012). Effect of Vibratory Treatment on Hot Cracking Resistance in AA6061 Alloy. Adv. Mat. Res. 584, 516–520. https://doi.org/10.4028/www.scientific.net/AMR.584.516

Bates, C.E. (1987). Selecting Quenchants to Maximize Tensile Properties and Minimize Distortion in Aluminum Parts. J. Heat Treating 5 (1), 27–40. https://doi.org/10.1007/BF02831618

Borrego, L.P., Costa, J.D., Jesús, J.S., Loureiro, A.R., Ferreira, J.M. (2014). Fatigue Life Improvement by Friction Stir Processing of 5083 Aluminium Alloy MIG Butt Welds. Theor. Appl. Fract. Mec. 5 (1), 27–40. https://doi.org/10.1016/j.tafmec.2014.02.002

Brandt, U., Lawrence, F.V., Sonsino, C.M. (2001). Fatigue crack initiation and growth in AlMg4.5Mn butt weldments. Fatigue Fract. Eng. M. 24 (2), 117–126. https://doi.org/10.1046/j.1460-2695.2001.00372.x

Brown, P.E., Adams, M. (1961). Rapidly Solidified Alloy Structures. Tran. Amer. F. Society 69, 879–891.

Burden, M.H., Hunt, J.D. (1974a). Cellular and dendritic growth: I. J. Cryst. Growth. 22 (2), 99–108. https://doi.org/10.1016/0022-0248(74)90126-2

Burden, M.H., Hunt, J.D. (1974b). Cellular and dendritic growth: II. J. Cryst. Growth. 22 (2), 109–116. https://doi.org/10.1016/0022-0248(74)90127-4

Cahn, J.W. (1956). The Kinetics of Grain Boundary Nucleated Reactions. Acta Metal. 4 (5), 449–459. https://doi.org/10.1016/0001-6160(56)90041-4

Camey, K., Matlock, D.K., Krauss, G. (1997). The Effects of Thermomechanical Processing on the Hardenability of Boron-containing Low Carbon Plate Steels. THERMEC `97, Vol. I-II, pp. 693–700.

Campo, M., Escalera, M.D., Torres, B., Rams, J., Ure-a, A. (2007). Estudio Microestructural y de Resistencia de Uniones Soldadas de La Aleación AW7020 Por Procedimiento MIG En Función de La Preparación de Bordes. Rev. Metal. 43 (5).

Cao, G., Kou, S. (2005). Friction Stir Welding of 2219 Aluminum: Behavior of theta (Al2Cu) Particles. Weld. J. 84 (1), 1S–8S. https://app.aws.org/wj/supplement/WJ_2005_01_s1.pdf.

Cavazos, J.L., Colás, R. (2003). Quench Sensitivity of a Heat Treatable Aluminum Alloy. Mater. Sci. Eng. A. 363 (1–2), 171–178. https://doi.org/10.1016/S0921-5093(03)00616-6

Chang, C.C., Chen, C.L., Wen, J.Y., Cheng, C.M., Chou, C.P. (2012). Characterization of Hot Cracking Due to Welding of High-Strength Aluminum Alloys. Mater. Manuf. Process 27 (6), 658–663. https://doi.org/10.1080/10426914.2011.593245

Cheever, D.L., Howden, D.G. (1969). Nature of weld surface ripples. Weld. J. 48 (4), 179s–180s.

Cheng, CM, Chou, C.P., Lee, I.K., Lin, H.Y. (2005). Hot Cracking of Welds on Heat Treatable Aluminium Alloys. Sci. Technol. Weld. Joi. 10 (3), 344–352. https://doi.org/10.1179/174329305X40688

Choi, S.K., Ko, S.H., Yoo, C.D., Kim, Y.S. (1998a). Dynamic Simulation of Metal Transfer in GMAW, Part 1: Short-circuit Transfer Mode. Weld. J. 77 (1), 45s–51s.

Choi, S.K., Ko, S.H., Yoo, C.D., Kim, Y.S. (1998b). Dynamic Simulation of Metal Transfer in GMAW, Part 1: Globular and Spray Transfer Modes. Weld. J. 77 (1), 38s–44s.

Coniglio, N., Cross, C.E. (2013). Initiation and growth mechanisms for weld solidification cracking. Int. Mater. Rev. 58 (7), 375–397. https://doi.org/10.1179/1743280413Y.0000000020

Costa, J.D.M., Jesús, J.S., Loureiro, A., Ferreira, J.A.M., Borrego, L.P. (2014). Fatigue Life Improvement of Mig Welded Aluminium T-joints by Friction Stir Processing. Int. J. Fatigue 61, 244–254. https://doi.org/10.1016/j.ijfatigue.2013.11.004

Craig, E. (1987). A unique mode of gmaw transfer. Weld. J. 66 (9), 51–55.

Croucher, T. (1987). Critical Parameters for Evaluating Polymer Quenching of Aluminum. Heat Treating 12 (19), 21–25.

Cumbrera, F.L., Sánchez-Bajo, F. (1995). The Use of the JMAYK Kinetic Equation for the Analysis of Solid-state Reactions: Critical Considerations and Recent Interpretations. Thermochim. Acta 266, 315–330. https://doi.org/10.1016/0040-6031(95)02554-5

Croucher, T. (1982). Quenching of Aluminum Alloys: What This Key Step Accomplishes, Heat Treating. Vol. XIV, pp. 20–21.

Dannessa, A.T. (1966). Characteristic redistribution of solute in fusion welding. Weld. J. 45 (12), 569s–576s.

Dannessa, A.T. (1970). Sources and effects of growth rate fluctuations during weld metal solidification. Weld. J. 49 (2), 41s–45s.

Deschamps, A, Nicolas, M., Perrard, F., Perez, M. (2004). Quantitative characterization and modelling of precipitation kinetics towards understanding non isothermal precipitation and coupled phenomena. Rev. Metall. Paris 101 (5), 361–379. https://doi.org/10.1051/metal:2004158

Devakumaran, K., Ghosh, P.K. (2010). Thermal Characteristics of Weld and HAZ During Pulse Current Gas Metal Arc Weld Bead Deposition on HSLA Steel Plate. Mater. Manuf. Process. 25 (7), 616–630. https://doi.org/10.1080/10426910903229347

Evancho, J.W., Staley, J.T. (1974). Kinetics of precipitation in aluminum-alloys during continuous cooling. Metall. Trans. 5 (1), 43–47.

Fan, J., Thomy, C., Vollertsen, F. (2011). Effect of Thermal Cycle on the Formation of Intermetallic Compounds in Laser Welding of Aluminum-Steel Overlap Joints. In Proceedings. Physcs. Proc. 12 (Part A), 134–141. https://doi.org/10.1016/j.phpro.2011.03.017

Fink, W.L., Willey, L.A. (1947). Quenching of 75S Aluminum Alloy. Transactions AIME 175, 414–427.

Fracasso, F. (2010). Influence of quench rate on the hardness obtained after artificial ageing of an Al-Si-Mg alloy. Thesis, Jönköping Institute of Technology, Sweden. http://www.diva-portal.org/smash/get/diva2:324704/FULLTEXT01.pdf.

Gomiero, P., Brechet, Y., Louchet, F., Tourabi, A., Wack, B. (1992). Microstructure and mechanical-Properties of a 2091 alli alloy 2. Mechanical-properties - yield stress and work-hardening. Acta Metall. Mater. 40 (4), 857–861. https://doi.org/10.1016/0956-7151(92)90028-D

Guezel, A., Jaeger, A., Khalifa, N.B., Tekkaya, A.E. (2010). Simulation of the Quench Sensitivity of the Aluminum Alloy 6082. Key Eng. Mat. 424, 51–56. https://doi.org/10.4028/www.scientific.net/KEM.424.51

Hall, D.D., Mudawar, I. (1995). Predicting the impact of quenching on mechanical-properties of complex-shaped aluminum-alloy parts. J. Heat Trans. T. Asme 117 (2), 479–488. https://doi.org/10.1115/1.2822547

Huang, J.C., Ardell, A.J. (1988). Addition rules and the contribution of delta' precipitates to strengthening of aged al-li-cu alloys. Acta Metall. Mater. 36 (11), 2995–3006. https://doi.org/10.1016/0001-6160(88)90182-4

Huang, C., Kou, S. (2000). Partially Melted Zone in Aluminum Welds - Liquation Mechanism and Directional Solidification. Weld. J. 79 (5), 113s–120s.

Huang, C., Kou, S. (2001a). Partially Melted Zone in Aluminum Welds - Planar and Cellular Solidification. Weld. J. 80 (2), 46s–53s.

Huang, C., Kou, S. (2001b). Partially Melted Zone in Aluminum Welds: Solute Segregation and Mechanical Behavior. Weld. J. 80 (1), 9s–17s.

Huang, C., Kou, S. (2003). Liquation Cracking in Partial-penetration Aluminum Welds: Effect of Penetration Oscillation and Backfilling. Weld. J. 82 (7), 184s–194s.

Hatch, J.E. (1984). Aluminum Properties and Physical Metallurgy. Quench Factor Analysis. Materials Park. Ohio, ASM International.

Johnson, J.A., Carlson, N.M., Smartt, H.B., Clark, D.E. (1991). Process-control of gmaw - sensing of metal transfer mode. Weld. J. 70 (4), 91s–99s.

Kang, M.J., Rhee, S. (2001). The Statistical Models for Estimating the Amount of Spatter in the Short Circuit Transfer Mode of GMAW. Weld. J. 80 (1), 1s–8s.

Kang, M.J., Kim, Y., Ahn, S., Rhee, S. (2003). Spatter Rate Estimation in the Short-circuit Transfer Region of GMAW. Weld. J. 82 (9), 238s–247s.

Katgerman, L., Eskin, D.G. (2008). Hot Cracking Phenomena in Welds II. In Search of the Prediction of Hot Cracking in Aluminium Alloys. Edit. T. Böllinghaus, H. Herold, C. Cross, J. Lippold, Springer-Verlag Berlin Heidelberg, pp. 11–26.

Kavalco, P.M., Canale, L.C.F. (2009). Quenching Fundamentals: Quenching of Aluminum Alloys: Property Prediction by Quench Factor Analysis. Heat Treating Progress 9 (3), 23–28.

Kim, J.-H., Jo, j.-S., Sim, W.-J., Im, H.-J. (2012). The Influence of Alloy Composition on the Hot Tear Susceptibility of the Al-Zn-Mg-Cu Alloy System. Korean J. Met. Mater. 50 (9), 669–675. https://doi.org/10.3365/KJMM.2012.50.9.669

Kim, C., Kang, M., Kang, N. (2013). Solidification Crack and Morphology for Laser Weave Welding of Al 5J32 Alloy. Sci. Technol. Weld. Joi. 18 (1), 57–61. https://doi.org/10.1179/1362171812Y.0000000073

Köster, W., Hoffmann, G. (1963). The Effect of Quenching Rate on the Kinetics of Cold Age Hardening of an Aluminum-Zinc Alloy with 10% Zinc. Z. Metallkd. 54, 570–575.

Ko, D.-H., Ko, D.-C., Lim, H.-J., Kim, B.-M. (2013). Application of QFA Coupled with CFD Analysis to Predict the Hardness of T6 Heat Treated Al6061 Cylinder. J. Mech. Sci. Technol. 27 (9), 2839–2844. https://doi.org/10.1007/s12206-013-0732-4

Lee, B.C., Park, J.K. (1998). Effect of the Addition of Ag on the Strengthening of Al3Li Phase in Al-Li Single Crystals. Acta Mater. 46 (12), 4181–4187. https://doi.org/10.1016/S1359-6454(98)00117-7

Li, S., Apelian, D. (2011). Hot tearing of aluminum alloys. (A critical literature review). Int. J. Metalcast. 5 (1), 23–40. https://doi.org/10.1007/BF03355505

Li, H.-Y., Zeng, C.-T., Han, M.-S., Liu, J.-J., Lu, X.-C. (2013a). Time–temperature–property Curves for Quench Sensitivity of 6063 Aluminum Alloy. T. Nonferr. Metal. Soc. 23 (1), 38–45. https://doi.org/10.1016/S1003-6326(13)62426-7

Li, S., Sadayappan, K., Apelian, D. (2013b). Role of Grain Refinement in the Hot Tearing of Cast Al-Cu Alloy. Metall. Mater. Trans. B. 44 (3), 614–623. https://doi.org/10.1007/s11663-013-9801-4

Li, X.R., Shao, Z., Zhang, Y.M., Kvidahl, L. (2013c). Monitoring and Control of Penetration in GTAW and Pipe Welding. Weld J. 92 (6), 190s–196s.

Ludwig, T.H., Schaffer, P.L., Arnberg, L. (2013). Influence of Phosphorus on the Nucleation of Eutectic Silicon in Al-Si Alloys. Metall. Mater. Trans. A 44 (13), 5796–5805. https://doi.org/10.1007/s11661-013-1945-y

Ma, S., Maniruzzaman, M.D., Mackenzie, D.S., Sisson Jr, R.D. (2007). A Methodology to Predict the Effects of Quench Rates on Mechanical Properties of Cast Aluminum Alloys. Metall. Mater. Trans. B. 38(4), 583–589. https://doi.org/10.1007/s11663-007-9044-3

Mancini, R.A., Olivo, A.P., Lescano, D. (1995). Comparison of the influence of the austenitizing temperature on the Jominy curve of DIN 49MnVS3 and SAE 1050 steels. An. Asoc. Quim. Argent. 83 (5), 243–247.

Matsumura, R., Tojo, Y., Kurosawa, M., Sadoh, T., Mizushima, I., Miyao, M. (2012). Growth-rate-dependent Laterally Graded SiGe Profiles on Insulator by Cooling-rate Controlled Rapid-melting-growth. Appl. Phys. Lett. 101 (24), 241904.. https://doi.org/10.1063/1.4769998

Méndez, P.F., Eagar, T.W. (2001). Welding Processes for Aeronautics. Mater. Sci. Forum 159 (5), 39–43.

Meseguer-Valdenebro, J.L., Portolés, A., Martinez-Conesa, E., O-oro, J. (2016). Numerical Study of TTP Curves Upon Welding of 6063-T5 Aluminium Alloy and Optimization of Welding Process Parameters by Taguchi's Method. Indian J. Eng. Mater. Sci. 23 (3), (En prensa).

Miguel, V., Martinez-Conesa, E.J., Segura, F., Manjabacas, M.C., Abellán, E. (2012). Optimization of GMAW process of AA 6063-T5 aluminum alloy butt joints based on the response surface methodology and on the bead geometry. Rev. Metal. 48 (5), 333–350. https://doi.org/10.3989/revmetalm.1169

Mikolajczak, P., Ratke, L. (2013). Effect of Stirring Induced by Rotating Magnetic Field on beta-Al5FeSi Intermetallic Phases During Directional Solidification in AlSi Alloys. Int. J. Cast. Metal. Res. 26 (6), 339–353. https://doi.org/10.1179/1743133613Y.0000000069

Mondolfo, L.F. (1976a). Aluminum Alloys. Ed. Mondolfo, L.F., Butterworth-Heinemann, pp. 433–434. http://www.sciencedirect.com/science/article/pii/B9780408709323501194.

Mondolfo, L.F. (1976b). Al–Si–Sr Aluminum–Silicon–Strontium System. Aluminum Alloys, Ed. Mondolfo, L.F., Butterworth-Heinemann, pp. 612–613. http://www.sciencedirect.com/science/article/pii/B9780408709323503314.

Morgeneyer, T.F., Starink, M.J., Wang, S.C., Sinclair, I. (2008). Quench sensitivity of toughness in an Al alloy: Direct observation and analysis of failure initiation at the precipitate-free zone. Acta Mater. 56 (12), 2872–2884. https://doi.org/10.1016/j.actamat.2008.02.021

Mougenot, J., Gonzalez, J.J., Freton, P., Cressault, Y. (2013). Argon and Arcal.37 Plasma Characteristics in a TIG Configuration. J. Phys. D-Applied Phys. 46 (49), 495203. https://doi.org/10.1088/0022-3727/46/49/495203

Mousavi, M.G., Cross, C.E., Grong, O. (2009). The Effect of High-Temperature Eutectic-Forming Impurities on Aluminum 7108 Weldability. Weld. J. 88 (5), 104S–110S.

Myhr, O.R, Grong, O. (1991). Process modeling applied to 6082-t6 aluminum weldments 1. Reaction-kinetics. Acta Metall. Mater. 39 (11), 2693–2702. https://doi.org/10.1016/0956-7151(91)90085-F

Myhr, O.R, Grong, O. (2000). Modelling of Non-isothermal Transformations in Alloys Containing a Particle Distribution. Acta Mater. 48 (7), 1605–1615. https://doi.org/10.1016/S1359-6454(99)00435-8

Myhr, O.R, Klokkehaug, S., Grong, O., Fjaer, H.G., Kluken, O.A. (1998). Modeling of Microstructure Evolution, Residual Stresses and Distortions in 6082-T6 Aluminum Weldments. Weld. J. Sup. 77 (7), 286s–292s. https://app.aws.org/wj/supplement/WJ_1998_07_s286.pdf

Myhr, O.R., Grong, O., Andersen, S.J. (2001). Modelling of the Age Hardening Behaviour of Al-Mg-Si Alloys. Acta Mater. 49 (1), 65–75. https://doi.org/10.1016/S1359-6454(00)00301-3

Myhr, O.R., Grong, O., Fjær, H.G., Marioara, C.D. (2004). Modelling of the Microstructure and Strength Evolution in Al-Mg-Si Alloys During Multistage Thermal Processing. Acta Mater. 52 (17), 4997–5008. https://doi.org/10.1016/j.actamat.2004.07.002

Nembach, E., Neite, G. (1985). Precipitation hardening of superalloys by ordered gamma-'-particles. Prog. Mater. Sci, 29 (3), 177–319. https://doi.org/10.1016/0079-6425(85)90001-5

Oksuz, C., Sen, O., Bozdogan, R., Cigdem, M. (2010). Quench Sensitivity of Medium and High Strength Aluminium Alloys. Mater. Test. 52 (6), 367–373. https://doi.org/10.3139/120.110137

Paju, M. (1992). Effects of boron protection methods on properties of steel. Ironmaking & Steelmaking 19 (6), 495–500.

Pekguleryuz, M.O., Lin, S., Ozbakir, E., Temur, D., Aliravci, C. (2010). Hot Tear Susceptibility of Aluminium-silicon Binary Alloys. Int. J. Cast Metal. Res. 23 (5), 310–320. https://doi.org/10.1179/136404610X12738456167267

Piris, N.M., Badía, J.M., Antoranz, J.M., Tarín, P. (2004). Influencia del tratamiento térmico sobre el endurecimiento por deformación en aleaciones de aluminio para aplicaciones aeronáuticas. Rev. Metal. 40 (4), 288–293. https://doi.org/10.3989/revmetalm.2004.v40.i4.276

Ploshikhin, V., Prihodovsky, A., Ilin A. (2011). Experimental investigation of the hot cracking mechanism in welds on the microscopic scale. Front. Mater. Sci. 5 (2), 135–145. https://doi.org/10.1007/s11706-011-0135-3

Quinn, T.P., Madigan, R.B., Siewert, T.A. (1994). An electrode extension model for gas metal arc-welding. Weld. J. 73 (10), S241–S248. https://app.aws.org/wj/supplement/WJ_1994_10_s241.pdf.

Rajamanickam, N., Balusamy, V., Thyla, P.R., Vignesh, G.H. (2009). Numerical Simulation of Thermal History and Residual Stresses in Friction Stir Welding of Al 2014-T6. J. Sci. Ind. Res. India 68 (3), 192–198. http://nopr.niscair.res.in/bitstream/123456789/3140/1/JSIR%2068%283%29%20192-198.pdf.

Ram, G.D.J., Murugesan, R., Sundaresan, S. (1999). Fusion Zone Grain Refinement in Aluminum Alloy Welds through Magnetic Arc Oscillation and Its Effect on Tensile Behavior. J. Mater. Eng. Perform. 8 (5), 513–520. https://doi.org/10.1361/105994999770346521

Savage, W.F., Hrubec, R.J. (1972). Synthesis of weld solidification using crystalline organic materials. Weld. J. 51 (5), S260–S271. https://app.aws.org/wj/supplement/WJ_1972_05_s260.pdf.

Schempp, P., Pittner, A., Rethmeier, M., Tang, Z., Seefeld, T., Cross, C.E. (2013). Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal Due to Inoculation. In Trends in welding research. Proc. 9th International Conference, ASM International, Materials Park OH, USA, pp. 98–107.

Shang, B.C., Yin, Z.M., Wang, G., Liu, B., Huang, Z.Q. (2011). Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy. Mater. Design 32 (7), 3818–3822. https://doi.org/10.1016/j.matdes.2011.03.016

Shen, J., Li, Z., Zhai, D., Libiao, W., Liu, K., Dai, Y. (2013). Effects of SiC on the Strengthening Activated Tungsten Inert Gas (SA-TIG) Welded of Magnesium Alloy. Mater. Manuf. Process. 28 (11), 1240–1247. https://doi.org/10.1080/10426914.2013.840907

Shercliff, H.R., Ashby, M.F. (1990). A process model for age hardening of aluminum-alloys. 1. The model. Acta Metall. Mater. 38 (10), 1789–1802. https://doi.org/10.1016/0956-7151(90)90291-N

Shercliff, H.R., Ashby, M.F. (1991). Modeling thermal-processing of aluminum-alloys. Mater. Sci. Tech. 7 (1), 85–88. https://doi.org/10.1179/mst.1991.7.1.85

Shinoda, T. (2004). Topics on Recent Friction Stir Welding Developments in Japan. Mater. Sci. Forum 449–452, 425–428. https://doi.org/10.4028/www.scientific.net/MSF.449-452.425

Siddiqui, R.A., Abdullah, H.A., Al-Belushi, K.R. (2000). Influence of aging parameters on the mechanical properties of 6063 aluminium alloy. J. Mater. Process. Tech. 102 (1–3), 234–240. https://doi.org/10.1016/S0924-0136(99)00476-8

Sisson, Jr., R.D., Shuhui, Ma, Maniruzzaman, Md. (2007). Modeling the Heat Treatment of Age-hardenable Cast Aluminum Alloys. Int. Heat Treat. Surf. Eng. 1 (2), 81–87. https://doi.org/10.1179/174951507X193666

Skena, C.C., Prucher, T., Czarnek, R., Jo, J.M. (1997). Hardenability Characteristics of P/M Alloy Steels. Inter. J. Powder Metall. 33 (7), 25–35.

Staley, J.T. (1987). Quench Factor Analysis of Aluminum Alloys. Mater. Sci. Tech. 3, 923–935. https://doi.org/10.1179/mst.1987.3.11.923

Starink, M.J. (1997). Kinetic equations for diffusion-controlled precipitation reactions. J. Mater. Sci. 32 (15), 4061–4070. https://doi.org/10.1023/A:1018649823542

Starink, M.J, Wang, P., Sinclair, I., Gregson, P.J. (1999). Microstrucure and strengthening of Al-Li-Cu-Mg alloys and MMCs: II. Modelling of yield strength. Acta Mater. 47 (14), 3855–3868. https://doi.org/10.1016/S1359-6454(99)00228-1

Stoicanescu, M., Ciobanu, I., Crisan, A. (2013). About the mathematical modeling of the chemical intercrystalline microsegregation of a steel with 0.533% C. Metal. Int. 18 (5), 143–148.

Tanner, D.A., Robinson, J.S. (2004). Effect of Precipitation During Quenching on the Mechanical Properties of the Aluminium Alloy 7010 in the W-temper. J. Mater. Process. Tech. 153–154, 998–1004. https://doi.org/10.1016/j.jmatprotec.2004.04.226

Timsit, R.S., Janeway, B.J. (1994). A novel brazing technique for aluminum. Weld. J. 73 (6), S119–S128. https://app.aws.org/wj/supplement/WJ_1994_06_s119.pdf.

Tiryakio?lu, M., Shuey, R.T. (2010). Modeling Quench Sensitivity of Aluminum Alloys for Multiple Tempers and Properties: Application to AA2024. Metall. Mater. Trans. A 41 (11), 2984–2991. https://doi.org/10.1007/s11661-010-0359-3

Totten, G.E., Bates, C.E., Jarvis, L.M. (1996). Cooling Curve and Quench Factor Characterization of 2024 and 7075 Aluminum Bar Stock Quenched in Type I Polymer Quenchants. ASM International, Ohio, USA pp. 221–229.

Totten, G.E., Webster, G.M., Bates, C.E. (1997). Quench Factor Analysis: Step-by-step Procedures for Experimental Determination. 1st Inter. Non-ferrous processing and technology conference, Ed. T. Bains, DS MacKenzie, Materials Park, OH, ASM International, pp. 305–313.

Totten, G.E., Mackenzie, D.S. (2000). Aluminum Quenching Technology: A Review. Mater. Sci. Forum 331–337, 589–594. https://doi.org/10.4028/www.scientific.net/MSF.331-337.589

Totten, G.E., MacKenzie, D.S. (2003). Handbook of Aluminum. Physical Metallurgy and Proces. Vol. 1, New York, USA.

Trivedi, R., Kurz, W. (1994). Dendritic growth. Int. Mater. Rev. 39 (2), 49–74. https://doi.org/10.1179/imr.1994.39.2.49

Vruggink, J.E. (1968). Quench Rate Effects on the Mechanical Properties of Heat Treatable Aluminum Alloys. Meeting of TMS, Detroit, MI.

Vruggink, J.E., Willey, L.A., Hunsicke, H.Y. (1968). Effects of quenching rate on mechanical properties of heat-treatable aluminum alloys. J. Metals 20 (8), 65s–68s.

Wagner, R., Kampmann, R., Voorhees, P.W. (1991). Homogeneous Second-phase Precipitation." In Materials Science and Technology : A Comprehensive Treatment. Weinheim, Wiley-VCH.

Weygand, D, Bréchet, Y., Lépinoux, J. (1999). Zener Pinning and Grain Growth: A Two-dimensional Vertex Computer Simulation. Acta Mater. 47 (3), 961–970. https://doi.org/10.1016/S1359-6454(98)00383-8

Wu, L.W., Ferguson, G. (2011). Aluminium Alloys, Theory and Applications. Modelling of Precipitation Hardening in Casting Aluminium Alloys. Book Edited by Tibor Kvackaj, In Tech.

Yang, Y.K., Kou, S. (2007). Fusion-boundary Macrosegregation in Dissimilar-filler Metal Al-Cu Welds. Weld. J. 86 (11), 331S–339S. https://app.aws.org/wj/supplement/wj1107-331.pdf.

Yang, Y.K., Dong, H., Cao, H., Chang, Y.A., Kou, S. (2008a). Liquation of Mg Alloys in Friction Stir Spot Welding. Weld. J. 87 (7), 167S–177S. https://app.aws.org/wj/supplement/WJ_2008_07_s167.pdf.

Yang, Y.K., Dong, H., Kou, S. (2008b). Liquation Tendency and Liquid-Film Formation in Friction Stir Spot Welding. Weld. J. 87 (8), 202s–211s. https://app.aws.org/wj/supplement/WJ_2008_08_s202.pdf.

Yang, M., Qi, B., Cong, B., Liu, F., Yang, Z. (2013). Effect of pulse frequency on microstructure and properties of Ti-6Al-4V by ultrahigh-frequency pulse gas tungsten arc welding. Int. J. Adv. Manuf. Tech. 68 (1), 19–31. https://doi.org/10.1007/s00170-013-4822-3

Yu, H., Ye, Z., Chen, S. (2013). Application of Arc Plasma Spectral Information in the Monitor of Al-Mg Alloy Pulsed GTAW Penetration Status Based on Fuzzy Logic System. Int. J. Adv. Manuf. Tech. 68 (9), 2713–2727. https://doi.org/10.1007/s00170-013-4877-1

Zervaki, A.D., Haidemenopoulos, G.N. (2007). Computational Kinetics Simulation of the Dissolution and Coarsening in the HAZ during Laser Welding of 6061-T6 Al-Alloy. Weld. J. 86 (8), 211s–221s. http://www.alloyneering.com/images/pdfs/9_HAZmodelling_WJ_2007.pdf.




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es