Revista de Metalurgia, Vol 53, No 4 (2017)

Pérdida de ductilidad debido a la descarburación y pérdida de Mn de un acero TWIP de tamaño de grano grosero


https://doi.org/10.3989/revmetalm.109

Fernando de las Cuevas
UPNA (Universidad Pública de Navarra) - Siemens Gamesa Renewable Energy Innovation & Technology, S.L. , España
orcid http://orcid.org/0000-0002-2344-7353

Javier Gil Sevillano
CEIT y TECNUN (Universidad de Navarra) , España
orcid http://orcid.org/0000-0002-1716-8200

Resumen


Se ha observado una clara transición de la ductilidad a tracción con el tamaño de grano D del orden 15 μm - 20 μm (1,50 μm ≤ D < 50 μm) en un acero TWIP, 22% de Mn, 0,6% de C (% en masa). Este comportamiento es una combinación de un efecto intrínseco del tamaño de grano D en la resistencia y el endurecimiento por deformación del material, con un efecto extrínseco, proceso de descarburación superficial y pérdida de Mn ocurrido durante los tratamientos de recocido a T ≥ 1000 ºC. En el presente trabajo se ha estudiado en profundidad este efecto extrínseco sucedido en el acero TWIP. Se han realizado análisis por GDOES (Espectroscopia Óptica de Descarga Luminiscente) para estudiar cuantitativamente los perfiles de concentración de C y Mn. La profundidad de descarburación superficial se ha modelizado usando la teoría de Birks-Jackson. Se ha observado vía ferritoscopio que, en el volumen descarburizado, coexisten dos microconstituyentes: α’-martensita y γ-austenita. La ductilidad del acero TWIP de tamaño de grano grosero, sometido a altas temperaturas y largos tiempos de recocido, disminuye como consecuencia de la formación de α’-martensita y γ-austenita menos estable con menor energía de defectos de apilamiento, EDA, debido a la pérdida de Mn en el volumen descarburizado.

Palabras clave


Acero TWIP; Descarburación; Energía de defectos de apilamiento (EDA); Maclaje; α’- martensita; γ – austenita

Texto completo:


HTML PDF XML

Referencias


Allain, S., Chateau, J.P., Bouaziz, O., Migot, S., Guelton, N. (2004). Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater. Sci. Eng. A 387–389, 158–162. https://doi.org/10.1016/j.msea.2004.01.059

Ankem, S., Greene, C.A., Aiyangar, A.K. (1999). Recent developments in growth kinetics of deformation twins in bulk metallic materials. Proceedings of the Symposium. on Adv. in Twinning: The Minerals, Metals & Mater. Society, pp. 127–143.

Birks, N., Jackson, J. (1970). Quantitative treatment of simultaneous scaling and decarburization of steels. J. Iron Steel Inst. 208, 81–85.

Birks, N., Meier, G.H., Pettit, F.S. (2006). Introduction to the High-temperature Oxidation of Metals. 2nd Ed., Cambridge University Press, New York. https://doi.org/10.1017/CBO9781139163903

Bouaziz, O., Allain, S., Scott, C. (2008). Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scripta Mater. 58 (6), 484–487. https://doi.org/10.1016/j.scriptamat.2007.10.050

Bouaziz, O., Allain, S., Scott, C.P., Cugy, P., Barbier, D. (2011). High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci. 15 (4), 141–168. https://doi.org/10.1016/j.cossms.2011.04.002

Chen, L., Zhao, Y., Qin, X. (2013). Some Aspects of High Manganese Twinning-Induced Plasticity (TWIP) Steel, A Review. Acta Metall. Sin. 26 (1), 1–15. https://doi.org/10.1007/s40195-012-0501-x

Cornette, D., Cugy, P., Hildenbrand, A., Bouzekri, M., Lovato, G. (2005). Ultra high strength FeMn TWIP steels for automotive safety parts. Rev. Metall-Paris CIT 102 (12), 905–918. https://doi.org/10.1051/metal:2005151

De Cooman, B.C., Chin, K.-G., Kim, J.M. (2011). New Trends and Developments in Automotive System Engineering. High Mn TWIP Steels for Automotive Applications, Chapter 6, Editor Marcello Chiaberge.

De las Cuevas, F., Reis, M., Ferraiuolo, A., Pratolongo, G., Karjalainen, L.P., Alkorta, J., Gil Sevillano, J. (2010a). Hall-Petch relationship of a TWIP steel. Key Eng. Mater. 423, 147–152. http://dx.doi.org/10.4028/www.scientific.net/KEM.423.147. https://doi.org/10.4028/www.scientific.net/KEM.423.147

De las Cuevas, F., Reis, M., Ferraiuolo, A., Pratolongo, G., Karjalainen, L.P., García Navas, V., Gil Sevillano, J. (2010b). Kinetics of recrystallization and grain growth of cold rolled TWIP steel. Adv. Mater. Res. 89–91, 153–158. https://doi.org/10.4028/www.scientific.net/AMR.89-91.153

De las Cuevas, F., Ferraiuolo, A., Karjalainen, L.P., Gil Sevi- llano, J. (2014). Propiedades mecánicas a tracción de un acero TWIP a altas velocidades de deformación: relación de Hall-Petch. Rev. Metal. 50 (4), e031. https://doi.org/10.3989/revmetalm.031

Fick, A. (1855). Ueber Diffusion. Ann. Physik-Leipzig 170 (1), 59–86. https://doi.org/10.1002/andp.18551700105

Frommeyer, G., Grässel, O. (1998). Light Constructional Steel and the Use Thereof. Patent PCT/EP98/04044. WO 99/01585 A1.

Frommeyer, G., Drewes, E.J., Engl, B. (2000). Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev. Metall-Paris 97 (10), 1245–1253. https://doi.org/10.1051/metal:2000110

Galán, J., Samek, L., Verleysen, P., Verbeken, K., Houbaert, Y. (2012). Advanced high strength steels for automotive industry. Rev. Metal. 48 (2), 118–131. https://doi.org/10.3989/revmetalm.1158

Ghasri-Khouzani, M., McDermid, J.R. (2015). Effect of carbon content on the mechanical properties and microstructural evolution of Fe-22Mn-C steels. Mater. Sci. Eng. A 621, 118–127. https://doi.org/10.1016/j.msea.2014.10.042

Grässel, O., Frommeyer, G. (1998). Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels. Mater. Sci. Tech. 14 (12), 1213–1217. https://doi.org/10.1179/mst.1998.14.12.1213

Grässel, O., Frommeyer, G., Derder, D., Hofmann, H. (1997). Phase transformation and mechanical properties of Fe-Mn-Si-Al TRIP-steels. J. Phys. IV France 7, - C5.383-C5.388. https://doi.org/10.1051/jp4:1997560

Grässel, O., Krüger, L., Frommeyer, G., Meyer, L.W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application. Int. J. Plasticity 16 (10–11), 1391–1409. https://doi.org/10.1016/S0749-6419(00)00015-2

Gil Sevillano, J., de las Cuevas, F. (2012). Internal stresses and the mechanism of work hardening in twinning-induced plasticity steels. Scripta Mater. 66 (12), 978–981. https://doi.org/10.1016/j.scriptamat.2012.02.019

Goldberg, A., Ruano, O.A., Sherby, O.D. (1992). Development of ultrafine microstructures and superplasticity in Hadfield manganese steels. Mater. Sci. Eng. A 150 (2), 187–194. https://doi.org/10.1016/0921-5093(92)90111-D

Hadfield, R.A. (1883). High manganese steel. British Patent Nº 200/1883.

Khalissi, M., Singh Raman, R.K., Khoddam, S. (2011). Stress Corrosion Cracking of Novel Steel for Automotive Applications. Procedia Eng. 10, 3381–3386. https://doi.org/10.1016/j.proeng.2011.04.557

Koyama, M., Sawaguchi, T., Tsuzaki, K. (2012a). Quasi-cleavage Fracture along Annealing Twin Boundaries in a Fe–Mn–C Austenitic Steel. ISIJ Int. 52 (1), 161–163. https://doi.org/10.2355/isijinternational.52.161

Koyama, M., Akiyama, E., Tsuzaki, K. (2012b). Hydrogen embrittlement in a Fe-Mn-C ternary twinning induced plasticity. Corros. Sci. 54, 1–4. https://doi.org/10.1016/j.corsci.2011.09.022

Lin, H.C., Lin, K.M., Lin, C.S., Ouyang, T.M. (2002). The corrosion behavior of Fe-based shape memory alloys. Corros. Sci. 44 (9), 2013–2026. https://doi.org/10.1016/S0010-938X(02)00027-6

Pierce, D.T., Jiménez, J.A., Bentley, J., Raabe, D., Oskay, C., Witting, J.E. (2014). The influence of manganese content on the stacking fault and austenite / e-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory. Acta Mater. 68, 238–253. https://doi.org/10.1016/j.actamat.2014.01.001

Pierce, D.T., Jiménez, J.A., Bentley, J., Raabe, D., Oskay, C., Witting, J.E. (2015). The influence of stacking fault energy on the microstructural and strain hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Mater. 100, 178–190. https://doi.org/10.1016/j.actamat.2015.08.030

Rong, Y.H., Meng, Q.P., He, G., Xu, Z.Y. (2003). Calculation of the Stacking Fault Energies of Fe-Mn Alloys by Embedded-Atom Method. Journal Shanghai Jiaotong University 37, 171–174. http://en.cnki.com.cn/Journal_en/C-C000-SHJT-2003-02.htm.

Saeed-Akbari, A., Imalau, J., Prahl, U., Bleck, W. (2009). Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels. Metall. Mater. Trans. A 40 (13), 3076–3090. https://doi.org/10.1007/s11661-009-0050-8

Scott, C., Allain, S., Faral, M., Guelton, N. (2006). The development of a new Fe-Mn-C austenitic steel for automotive applications. Rev. Metall-Paris 103 (6), 293–302. https://doi.org/10.1051/metal:2006142

Sipos, K., Remy, L., Pineau, A. (1976). Influence of austenite predeformation on mechanical properties and strain-induced martensitic transformations of a high manganese steel. Metall. Trans. A. 7 (5), 857–864. https://doi.org/10.1007/BF02644083

Tomota, Y., Strum, M., Morris, J.W. (1987). The relationship between toughness and microstructure in Fe-high Mn binary alloys. Metall. Mater. Trans. A 18 (6), 1073–1081. https://doi.org/10.1007/BF02668556




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revista@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es