Service life prediction for 50-year-old buildings in marine environments

Authors

DOI:

https://doi.org/10.3989/revmetalm.111

Keywords:

Chloride, Concrete corrosion cracking, Expansive stress, Marine environment, Rust layer

Abstract


Steel reinforcing bars are often coated with rusts formed during service in reinforced concrete (RC) structures. Rust layers growing on steel rebars induce expansive stresses and cause cracking on cover concrete. This study uses steel corrosion rate results measured on reinforced concrete buildings of more than 50 years of age located in marine environments and considers the pressure generated by the volume expansion of corrosion product layers to calculate the service life of the RC structures using a numerical simulation, estimating the time to corrosion cracking of the concrete cover. Akaganeite, goethite, lepidocrocite, hematite, magnetite and maghemite were identified by X-ray diffraction as crystalline phase constituents of the rust layers.

Downloads

Download data is not yet available.

References

Achintha, P.M.M., Burgoyne, C.J. (2008). Fracture mechanism of plate debonding. J. Compos. Constr. 12 (4), 396–404. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(396)

Andrade, C., Alonso, C., Molina, F.J. (1993). Cover cracking as a function of bar corrosion: Part I-Experimental test. Mater. Struct. 26 (8), 453–464. https://doi.org/10.1007/BF02472805

Balafas, I., Burgoyne, C.J. (2011). Modeling the structural effects of rust in concrete cover. J. Eng. Mech.-ASCE 137 (3), 175–185. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000215

Bertolini, L., Elsener, B., Pedeferri, P., Polder, R. (2004). Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Wiley-VCH, Weinheim, Germany.

Bossio, A., Monetta, T., Bellucci, F., Lignola, G.P., Prota, A. (2015). Modeling of concrete cracking due to corrosion process of reinforcement bars. Cement Concrete Res. 71, 78–92. https://doi.org/10.1016/j.cemconres.2015.01.010

Cao, C., Cheung, M.M.S., Chan, B.Y.B. (2013). Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate. Corros. Sci. 69, 97–109. https://doi.org/10.1016/j.corsci.2012.11.028

Chung, L., Najm, H., Balaguru, P. (2008). Flexural behavior of concrete slabs with corroded bars. Cement Concrete Comp. 30 (3), 184–193. https://doi.org/10.1016/j.cemconcomp.2007.08.005

Jaegermann, C. (1990). Effect of water-cement ratio and curing on chloride penetration into concrete exposed to Mediterranean sea climate. ACI Mater. J. 87 (4), 333–339.

Fahy, C., Wheeler, S.J., Gallipoli, D., Grassi, P. (2017). Corrosion induced cracking modelled by a coupled transport-structural approach. Cement Concrete Res. 94, 24–35. https://doi.org/10.1016/j.cemconres.2017.01.007

Fajardo, S., Bastidas, D.M., Criado, M., Romero, M., Bastidas, J.M. (2011). Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide solution. Constr. Build. Mater. 25 (1), 4190–4196. https://doi.org/10.1016/j.conbuildmat.2011.04.056

González, J.A., Ramírez, E., Bautista, A., Feliu, S. (1996). The behaviour of pre-rusted steel in concrete. Cement Concrete Res. 26 (3), 501–511. https://doi.org/10.1016/S0008-8846(96)85037-X

Graedel, T.E., Frankenthal, R.P. (1990). Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere. J. Electrochem. Soc. 137 (8), 2385–2394. https://doi.org/10.1149/1.2086948

Leung, C.K.Y. (2001). Modeling of concrete cracking induced by steel expansion. J. Mater. Civil Eng. 13 (3), 169–175. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(169)

Liu, Y., Weyers, R.E. (1998). Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures. ACI Mater. J. 95 (6), 675–680.

Lu, C., Jin, W., Liu, R. (2011). Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures. Corros. Sci. 53 (4), 1337–1347. https://doi.org/10.1016/j.corsci.2010.12.026

Mangat, P.S., Gurusamy, K. (1987). Chloride diffusion in steel fibre reinforced marine concrete. Cement Concrete Res. 17 (3), 385–396. https://doi.org/10.1016/0008-8846(87)90002-0

Morcillo, M., González-Calbet, J.M., Jiménez, J.A., Díaz, I., Alcántara, J., Chico, B., Mazario-Fernández, A., Gómez-Herrero, A., Llorente, I., de la Fuente, D. (2015). Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization. Corrosion 71 (7), 872–886. https://doi.org/10.5006/1672

Mu-oz, A., Andrade, C., Torres, A., Rodríguez, J. (2007). Relation between crack width and diameter of rebar loss due to corrosion of reinforced concrete members. ECS Transactions 3 (13), 29–36.

Nielsen, E.P., Geiker, M.R. (2003). Chloride diffusion in partially saturated cementitious material. Cement Concrete Res. 33 (1), 133–138. https://doi.org/10.1016/S0008-8846(02)00939-0

Page, C.L., Short, N.R., El Tarras, A. (1981). Diffusion of chloride ions in hardened cement pastes. Cement Concrete Res. 11 (3), 395–406. https://doi.org/10.1016/0008-8846(81)90111-3

Pantazopoulou, S.J., Papoulia, K.D. (2001). Modeling cover-cracking due to reinforcement corrosion in RC structures. J. Eng. Mech.-ASCE 127 (4), 342–351. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342)

Rasheeduzzafar, Al-Saadoun, S.S., Al-Gahtani, A.S., Dakhil, F.H. (1990). Effect of tricalcium aluminate content of cement on corrosion of reinforcing steel in concrete. Cement Concrete Res. 20 (5), 723–738. https://doi.org/10.1016/0008-8846(90)90006-J

Rémazeilles, C., Refait, Ph. (2007). On the formation of ?–FeOOH (akaganéite) in chloride-containing environments. Corros. Sci. 49 (2), 844–857. https://doi.org/10.1016/j.corsci.2006.06.003

Robie, R.A., Hemingway, B.S., Fisher, J.R. (1979). Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascal) pressure and at higher temperatures. Report, Bulletin 1452, Publisher: U.S. Geological Survey, USA.

Sanz, B., Planas, J., Sancho, J.M. (2015). A closer look to the mechanical behavior of the oxide layer in concrete reinforcement corrosion. Int. J. Solids Struct. 62, 256–268. https://doi.org/10.1016/j.ijsolstr.2015.02.040

Suda, K., Misra, S., Motohashi, K. (1993). Corrosion products of reinforcing bars embedded in concrete. Corros. Sci. 35 (5–8), 1543–1549. https://doi.org/10.1016/0010-938X(93)90382-Q

Topçu, I.B., Bo?a, A.R., Demir, A. (2010). The effect of elevated temperatures on corroded and uncorroded reinforcement embedded in mortar. Constr. Build. Mater. 24 (11), 2101–2107. https://doi.org/10.1016/j.conbuildmat.2010.04.050

Torres-Acosta, A.A., Castro-Borges, P. (2013). Corrosion-induced cracking of concrete elements exposed to a natural marine environment for five years. Corrosion 69 (11), 1122–1131. https://doi.org/10.5006/0844

Torres-Acosta, A.A., Martínez-Madrid, M. (2003). Residual life of corroding reinforced concrete structures in marine environment. J. Mater. Civil Eng. 15 (4), 344–353. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(344)

Vidal, T., Castel, A., François, R. (2004). Analyzing crack width to predict corrosion in reinforced concrete. Cement. Concrete Res. 34 (1), 165–174. https://doi.org/10.1016/S0008-8846(03)00246-1

Zhao, Y., Yu, J., Wu, Y., Jin, W. (2012). Critical thickness of rust layer at inner and out surface cracking of concrete cover in reinforced concrete structures. Corros. Sci. 59, 316–323. https://doi.org/10.1016/j.corsci.2012.03.018

Published

2018-03-30

How to Cite

Sánchez-Deza, A., Bastidas, D. M., La Iglesia, A., Mora, E. M., & Bastidas, J. M. (2018). Service life prediction for 50-year-old buildings in marine environments. Revista De Metalurgia, 54(1), e111. https://doi.org/10.3989/revmetalm.111

Issue

Section

Articles

Most read articles by the same author(s)