Revista de Metalurgia, Vol 54, No 1 (2018)

Predicción de la vida útil en servicio de edificios de 50 años expuestos a ambientes marinos


https://doi.org/10.3989/revmetalm.111

Agustín Sánchez-Deza
Naval Engineering School, Polytechnic University of Madrid (UPM)
orcid http://orcid.org/0000-0003-4078-9010

David M. Bastidas
National Center for Education and Research on Corrosion and Materials Performance, NCERCAMP-UA. Dept. of Chemical and Biomolecular Engineering. The University of Akron, Estados Unidos
orcid http://orcid.org/0000-0002-8720-7500

Angel La Iglesia
Institute of Geosciences (IGEO, CSIC), UCM, España
orcid http://orcid.org/0000-0002-2026-4279

Eleuterio M. Mora
Naval Engineering School, Polytechnic University of Madrid (UPM), España
orcid http://orcid.org/0000-0002-9093-9542

José M. Bastidas
National Centre for Metallurgical Research (CENIM, CSIC), España
orcid http://orcid.org/0000-0001-9616-0778

Resumen


Los refuerzos corrugados de acero embebidos en hormigón, presentan con frecuencia una capa de herrumbre formada durante la vida en servicio de las estructuras de hormigón armado (EHA). Las capas de óxido, productos de corrosión, que crecen en los refuerzos de acero inducen tensiones expansivas y causan el agrietamiento del recubrimiento de hormigón. El presente estudio utiliza los resultados de la velocidad de corrosión del acero corrugado, medidos en edificios de más de 50 años, construidos con hormigón armado, ubicados en ambientes marinos. El estudio considera la presión generada por la expansión de volumen de las capas de productos de corrosión para calcular la vida útil en servicio de las EHA utilizando una simulación numérica, estimando el tiempo hasta la fisuración por corrosión del recubrimiento de hormigón. Akaganeita, goethita, lepidocrocita, hematita, magnetita y maghemita fueron identificadas por difracción de rayos X, como constituyentes de las fases cristalinas de las capas de óxido.

Palabras clave


Ambiente marino; Cloruros; Corrosión hormigón; Herrumbre; Tensión expansiva

Texto completo:


HTML PDF XML

Referencias


Achintha, P.M.M., Burgoyne, C.J. (2008). Fracture mechanism of plate debonding. J. Compos. Constr. 12 (4), 396–404. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(396)

Andrade, C., Alonso, C., Molina, F.J. (1993). Cover cracking as a function of bar corrosion: Part I-Experimental test. Mater. Struct. 26 (8), 453–464. https://doi.org/10.1007/BF02472805

Balafas, I., Burgoyne, C.J. (2011). Modeling the structural effects of rust in concrete cover. J. Eng. Mech.-ASCE 137 (3), 175–185. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000215

Bertolini, L., Elsener, B., Pedeferri, P., Polder, R. (2004). Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Wiley-VCH, Weinheim, Germany.

Bossio, A., Monetta, T., Bellucci, F., Lignola, G.P., Prota, A. (2015). Modeling of concrete cracking due to corrosion process of reinforcement bars. Cement Concrete Res. 71, 78–92. https://doi.org/10.1016/j.cemconres.2015.01.010

Cao, C., Cheung, M.M.S., Chan, B.Y.B. (2013). Modelling of interaction between corrosion-induced concrete cover crack and steel corrosion rate. Corros. Sci. 69, 97–109. https://doi.org/10.1016/j.corsci.2012.11.028

Chung, L., Najm, H., Balaguru, P. (2008). Flexural behavior of concrete slabs with corroded bars. Cement Concrete Comp. 30 (3), 184–193. https://doi.org/10.1016/j.cemconcomp.2007.08.005

Jaegermann, C. (1990). Effect of water-cement ratio and curing on chloride penetration into concrete exposed to Mediterranean sea climate. ACI Mater. J. 87 (4), 333–339.

Fahy, C., Wheeler, S.J., Gallipoli, D., Grassi, P. (2017). Corrosion induced cracking modelled by a coupled transport-structural approach. Cement Concrete Res. 94, 24–35. https://doi.org/10.1016/j.cemconres.2017.01.007

Fajardo, S., Bastidas, D.M., Criado, M., Romero, M., Bastidas, J.M. (2011). Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide solution. Constr. Build. Mater. 25 (1), 4190–4196. https://doi.org/10.1016/j.conbuildmat.2011.04.056

González, J.A., Ramírez, E., Bautista, A., Feliu, S. (1996). The behaviour of pre-rusted steel in concrete. Cement Concrete Res. 26 (3), 501–511. https://doi.org/10.1016/S0008-8846(96)85037-X

Graedel, T.E., Frankenthal, R.P. (1990). Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere. J. Electrochem. Soc. 137 (8), 2385–2394. https://doi.org/10.1149/1.2086948

Leung, C.K.Y. (2001). Modeling of concrete cracking induced by steel expansion. J. Mater. Civil Eng. 13 (3), 169–175. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(169)

Liu, Y., Weyers, R.E. (1998). Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures. ACI Mater. J. 95 (6), 675–680.

Lu, C., Jin, W., Liu, R. (2011). Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures. Corros. Sci. 53 (4), 1337–1347. https://doi.org/10.1016/j.corsci.2010.12.026

Mangat, P.S., Gurusamy, K. (1987). Chloride diffusion in steel fibre reinforced marine concrete. Cement Concrete Res. 17 (3), 385–396. https://doi.org/10.1016/0008-8846(87)90002-0

Morcillo, M., González-Calbet, J.M., Jiménez, J.A., Díaz, I., Alcántara, J., Chico, B., Mazario-Fernández, A., Gómez-Herrero, A., Llorente, I., de la Fuente, D. (2015). Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization. Corrosion 71 (7), 872–886. https://doi.org/10.5006/1672

Mu-oz, A., Andrade, C., Torres, A., Rodríguez, J. (2007). Relation between crack width and diameter of rebar loss due to corrosion of reinforced concrete members. ECS Transactions 3 (13), 29–36.

Nielsen, E.P., Geiker, M.R. (2003). Chloride diffusion in partially saturated cementitious material. Cement Concrete Res. 33 (1), 133–138. https://doi.org/10.1016/S0008-8846(02)00939-0

Page, C.L., Short, N.R., El Tarras, A. (1981). Diffusion of chloride ions in hardened cement pastes. Cement Concrete Res. 11 (3), 395–406. https://doi.org/10.1016/0008-8846(81)90111-3

Pantazopoulou, S.J., Papoulia, K.D. (2001). Modeling cover-cracking due to reinforcement corrosion in RC structures. J. Eng. Mech.-ASCE 127 (4), 342–351. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342)

Rasheeduzzafar, Al-Saadoun, S.S., Al-Gahtani, A.S., Dakhil, F.H. (1990). Effect of tricalcium aluminate content of cement on corrosion of reinforcing steel in concrete. Cement Concrete Res. 20 (5), 723–738. https://doi.org/10.1016/0008-8846(90)90006-J

Rémazeilles, C., Refait, Ph. (2007). On the formation of ?–FeOOH (akaganéite) in chloride-containing environments. Corros. Sci. 49 (2), 844–857. https://doi.org/10.1016/j.corsci.2006.06.003

Robie, R.A., Hemingway, B.S., Fisher, J.R. (1979). Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascal) pressure and at higher temperatures. Report, Bulletin 1452, Publisher: U.S. Geological Survey, USA.

Sanz, B., Planas, J., Sancho, J.M. (2015). A closer look to the mechanical behavior of the oxide layer in concrete reinforcement corrosion. Int. J. Solids Struct. 62, 256–268. https://doi.org/10.1016/j.ijsolstr.2015.02.040

Suda, K., Misra, S., Motohashi, K. (1993). Corrosion products of reinforcing bars embedded in concrete. Corros. Sci. 35 (5–8), 1543–1549. https://doi.org/10.1016/0010-938X(93)90382-Q

Topçu, I.B., Bo?a, A.R., Demir, A. (2010). The effect of elevated temperatures on corroded and uncorroded reinforcement embedded in mortar. Constr. Build. Mater. 24 (11), 2101–2107. https://doi.org/10.1016/j.conbuildmat.2010.04.050

Torres-Acosta, A.A., Castro-Borges, P. (2013). Corrosion-induced cracking of concrete elements exposed to a natural marine environment for five years. Corrosion 69 (11), 1122–1131. https://doi.org/10.5006/0844

Torres-Acosta, A.A., Martínez-Madrid, M. (2003). Residual life of corroding reinforced concrete structures in marine environment. J. Mater. Civil Eng. 15 (4), 344–353. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(344)

Vidal, T., Castel, A., François, R. (2004). Analyzing crack width to predict corrosion in reinforced concrete. Cement. Concrete Res. 34 (1), 165–174. https://doi.org/10.1016/S0008-8846(03)00246-1

Zhao, Y., Yu, J., Wu, Y., Jin, W. (2012). Critical thickness of rust layer at inner and out surface cracking of concrete cover in reinforced concrete structures. Corros. Sci. 59, 316–323. https://doi.org/10.1016/j.corsci.2012.03.018




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es