Revista de Metalurgia, Vol 54, No 1 (2018)

Caracterización microestructural y modelización mediante elementos finitos de uniones soldadas de la aleación de Magnesio AZ31


https://doi.org/10.3989/revmetalm.114

José A. Segarra
E.T.S. de Ingenieros Industriales, Departamento de Física Aplicada e Ingeniería de Materiales, Universidad Politécnica de Madrid
orcid http://orcid.org/0000-0003-3513-0297

Antonio Portolés
E.T.S. de Ingenieros Industriales, Departamento de Física Aplicada e Ingeniería de Materiales, Universidad Politécnica de Madrid, España
orcid http://orcid.org/0000-0003-1224-0821

Resumen


En este artículo se ha investigado de qué manera la microestructura de las aleaciones de magnesio AZ31 se ve afectada por los ciclos térmicos que se producen durante los procesos de soldadura, tratando de modelizar mediante programas de elementos finitos los ciclos térmicos que se producen en estos materiales. Las muestras estudiadas han sido soldadas mediante soldadura TIG (Tungsten Inert Gas) y con diferentes materiales de aporte. En el estudio se ha empleado microscopía óptica para analizar la microestructura, microscopía electrónica de barrido y software de simulación. El estudio realizado indica por un lado que en este tipo de aleaciones los microconstituyentes más comunes son compuestos Al-Mn o Al-Mn-Mg, no observándose la presencia de la fase beta (Mg17Al12) a temperatura ambiente, por otro lado los modelos de simulación que se han obtenido indican que para las zonas que alcanzan temperaturas máximas del orden de 550 °C se produce la cristalización del material base y también sería el límite de las zona de disolución de los precipitados de composición Al-Mn o Al-Mn-Mg, que parecen actuar como inhibidores de la corrosión.

Palabras clave


AZ31; Corrosión; Elementos finitos; Microestructura; Microscopía electrónica; Precipitados; SEM; TIG

Texto completo:


HTML PDF XML

Referencias


Avedesiam M., Baker H. (1999). ASM Speciality Handbook. Magnesium and Magnesium alloys. Ed. ASM International, Materials Park Ohio, USA, pp. 3–4.

Ben Hamu, G., Eliezer, D., Wagner, L. (2009). The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J. Alloy. Compd. 468 (1–2), 222–229. https://doi.org/10.1016/j.jallcom.2008.01.084

Cheng, Y., Qin, T., Wang, H., Zhang, Z. (2009). Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. T. Nonferr. Metal. Soc. China 19 (3), 517–524. https://doi.org/10.1016/S1003-6326(08)60305-2

Dobrzanski, L.A., Tanski. T., Cızek, L., Brytan, Z. (2007). Structure and properties of magnesium cast alloys. J. Mater. Process. Tech. 192–193, 567–574. https://doi.org/10.1016/j.jmatprotec.2007.04.045

Feliu, Jr. S., Maffiotte, C., Galván, J.C., Barranco, V. (2011). Atmospheric corrosion of magnesium alloys AZ31 and AZ61 under continuous condensation conditions. Corros. Sci. 53 (5), 1865–1872. https://doi.org/10.1016/j.corsci.2011.02.003

Kramer, D.A. (2001). Magnesium, its Alloys and Compounds. U.S. Geological Survey. Open-File Report 01-341. Disponible: https://pubs.usgs.gov/of/2001/of01-341/of01-341.pdf.

Merino, M.C., Pardo, A., Arrabal, R., Merino, S., Casajús, P., Mohedano, M. (2010). Influence of chloride ion concentration and temperature on the corrosion of Mg–Al alloys in salt fog. Corros. Sci. 52 (5), 1696–1704. https://doi.org/10.1016/j.corsci.2010.01.020

Pardo, A., Merino, M.C., Coy, A.E., Arrabal, R., Viejo, F., Matykina, E. (2008). Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corros. Sci. 50 (3), 823–834. https://doi.org/10.1016/j.corsci.2007.11.005

Polmear, I.J. (2006). Light Alloys. 4th Edition, Elsevier, England.

Segarra, J.A., Calderón, B., Portolés, A. (2015). Study of the corrosion behavior of magnesium alloy weldings in NaCl solutions by gravimetric tests. Rev. Metal. 51 (3), e050. https://doi.org/10.3989/revmetalm.050

Song, G.-L., Xu, Z. (2012). Effect of microstructure evolution on corrosion of different crystal surfaces of AZ31 Mg alloy in a chloride containing solution. Corros. Sci. 54, 97–105. https://doi.org/10.1016/j.corsci.2011.09.005

Te-Chang, T., Chih-Chung, Ch., Deng-Maw, T., Ko-Ta, Ch. (2011). Modeling and analyzing the effects of heat treatment on the characteristics of magnesium alloy joint welded by the tungsten-arc inert gas welding. Mater. Design 32 (8–9), 4187–4194.

UNE-EN ISO 643 (2013). Aceros. Determinación micrográfica del tamaño de grano aparente. AENOR, Madrid.

Walton, C.A., Martin, H.J., Horstemeyer, M.F., Wang, P.T. (2012). Quantification of corrosion mechanisms under immersion and salt-spray environments on an extruded AZ31 magnesium alloy. Corros. Sci. 56, 194–208. https://doi.org/10.1016/j.corsci.2011.12.008

Zeng, R.-Ch., Zhang, J., Huang, W.-J., Dietzel, W., Kainer, K.U., Blawert, C., Ke, W. (2006). Review of studies on corrosion of magnesium alloys. T. Nonferr. Metal. Soc. China 16 (Suppl 2), s763–s771. https://doi.org/10.1016/S1003-6326(06)60297-5




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es