Revista de Metalurgia, Vol 54, No 2 (2018)

Características mecánicas y tribológicas de compuestos de dióxido de Titanio-Aluminio


https://doi.org/10.3989/revmetalm.119

Levent Ulvi Gezici
Celal Bayar University, Engineering Faculty. Department of Mechanical Engineering, Turquía
orcid http://orcid.org/0000-0002-0353-3270

Burak Gül
Celal Bayar University, Engineering Faculty. Department of Mechanical Engineering, Turquía
orcid http://orcid.org/0000-0002-4446-4259

Ugur Çavdar
Izmir Demokrasi University, Engineering Faculty, Mechanical Engineering Department, Turquía
orcid http://orcid.org/0000-0002-3434-6670

Resumen


El objetivo de este trabajo es investigar las propiedades mecánicas y tribológicas de refuerzos de dióxido de titanio (TiO2) en una matriz de aluminio (Al). Se utilizó aluminio de pureza 99,8% reforzado con TiO2 ensayándose cinco cantidades diferentes de dióxido de titanio. Se mezcló polvo de aluminio y TiO2 en un molino de bolas durante 30 min, utilizando un mezclador con eje descentrado. La mezcla se compactó mediante la técnica de prensado en frío a una presión de 250 MPa. Se utilizaron dos métodos diferentes para el sinterizado. El compactado en verde se sinterizó a 600 ºC durante 300 s en atmósfera ambiental con un sistema de inducción de ultra alta frecuencia (UHFIS) y con un horno convencional a 600 °C durante 1800 s. Las propiedades mecánicas y micro-estructurales de las muestras se compararon utilizando diferentes cantidades de refuerzo. La dureza máxima se observó para un refuerzo con 5% en peso de TiO2.

Palabras clave


Aluminio; TiO2; Sinterización por inducción; Metalurgia de polvos

Texto completo:


HTML PDF XML

Referencias


Aniolek, K., Kupka, M., Barylski, A. (2016). Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation. Wear 356–357, 23–29.

Chen, G.X., Zhau, Z.R. (2003). Correlation of a negative friction-velocity slope with sequal generation under reciprocating conditions. Wear 255, 376–384.

Chuang, L.-C., Luo, C.-H., Yang, S.-H. (2011). The structure and mechanical properties of thick rutile-TiO2 films using different coating treatments. Appl. Surf. Sci. 258 (1), 297–303.

Çavdar, U., Gül?ahin, ?. (2014). Ultra high frequency induction welding of powder metal compact. Rev. Metal. 50 (2), e016.

Çavdar, P.S., Çavdar, U. (2015). The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts. Rev. Metal. 51 (1), e036.

Gökçe, A., Fındık, F. (2008). Mechanical and physical properties of sintered aluminum powders. J. Achiev. Mater. Manuf. Eng. (JAMME) 30 (2), 157–164. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.563.1942&rep=rep1&type=pdf.

Hassani, A., Bagherpour, E., Qods, F. (2014). Influence of pores on workability of porous Al/SiC composities fabricated through powder metallurgy mechanical alloying. J. Alloy. Compd. 591, 132–142.

Khodabakhshi, F., Simchi, A., Kokabi, A.K., Gerlich, A.P., Nosko, M. (2014). Effects of post-annealing on the microstructure and mechanical properties of friction stir processed Al-Mg-TiO2 nanocomposites. Mater. Design 63, 30–41.

Leng, Y.X., Chen, J.Y., Yang, P., Sun, H., Huang, N. (2007). The microstructure and properties of titanium dioxide films synthesized by unbalanced magnetron sputtering. Nucl. Instrum. Meth. B 257 (1–2), 451–454.

Li, D., Chen, S., Wang, D., Li, Y., Shao, W., Long, Y., Liu, Z., Ringer, S.P. (2010). Thermo-analysis of nanocrystalline TiO2 ceramics during the whole sintering process using differential scanning calorimetry. Ceram. Int. 36 (2), 827–829.

Lin, D.C., Wang, G.X., Srivatsan, T.S., Al-Hajri, M., Petraroli, M. (2003). Influence of titanium dioxide nanopowder addition on microstructural development and hardness of tin-lead solder. Mater. Lett. 57 (21), 3193–3198.

Lumley, R. (2011). Fundamentals of Aluminium Metallurgy: Production, Processing and applications. 1st Edition, Woodhead Publishing Limited, p. 678.

Mazaheri, M., Zahedi, A.M., Haghighatzadeh, M., Sadrnezhaad, S.K. (2009). Sintering of titania nanoceramic: Densification and grain growth. Ceram. Int. 35 (2), 685–691.

Pinto, D., Bernardo, L., Amaro, A., Lopes, S. (2015). Mechanical properties of epoxy nanocomposities using titanium dioxide as reinforcement – A review. Constr. Build. Mater. 95, 506–524.

Piwo?ski, I. (2007). Preparation method and some tribological properties of porous titanium dioxide layers. Thin Solid Films 515 (7–8), 3499–3506.

Pydi, H.P.R., Adhithan, B., Bakrudeen, A.S.B. (2013). Microstructure Exploration of the Aluminum-Tungsten Carbide Composite with different Manufacturing circumstances. IJSCE 2 (6), 257–261.

Raut, A., Choudhary, D. (2015). Nano enabled coatings makes aircraft invisible. Int. J. Pure Appl. Res. Eng. Techn. (IJPRET) 3 (9), 134–146. http://www.ijpret.com/publishedarticle/ 2015/4/IJPRET%20-%20MECH%20127.pdf.

Shin, J.H., Choi, H.J., Bae, D.H. (2013). Evolution of the interfacial layer and its effect on mechanical properties in TiO2 nanoparticle reinforced aluminium matrix composites. Mat. Sci. Eng. A-Struct. 578, 80–89.

Singh, M., Goyal, K., Goyal, D.K. (2015). Fabrication performance of aluminium based metal matrix composites with SiO2 and TiO2 as reinforced particles. Universal J. Mech. Eng. 3 (4), 142–146.

Sorkhe, Y.A., Aghajani, H., Tabrizi, A.T. (2014). Mechanical alloying and sintering of nanostructured TiO2 reinforced copper composite and its characterization. Mater. Design 58, 168–174.

Tubio, C.R., Guitián, F., Salguerio, J.R., Gil, A. (2015). Anatase and rutile TiO2 monodisperse microspheres by rapid thermal annealing: A method to avoid sintering at high temperaturas. Mater. Lett. 141, 203–206.

Xiang, N., Song, R., Zhao, J., Li, H., Wang, C., Wang, Z. (2015). Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy by micro-arc oxidation. T. Nonferr. Metal. Soc. 25 (10), 3323–3328.




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revista@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es