Revista de Metalurgia, Vol 54, No 2 (2018)

Características mecánicas y tribológicas de compuestos de dióxido de Titanio-Aluminio


https://doi.org/10.3989/revmetalm.119

Levent Ulvi Gezici
Celal Bayar University, Engineering Faculty. Department of Mechanical Engineering, Turquía
orcid http://orcid.org/0000-0002-0353-3270

Burak Gül
Celal Bayar University, Engineering Faculty. Department of Mechanical Engineering, Turquía
orcid http://orcid.org/0000-0002-4446-4259

Ugur Çavdar
Izmir Demokrasi University, Engineering Faculty, Mechanical Engineering Department, Turquía
orcid http://orcid.org/0000-0002-3434-6670

Resumen


El objetivo de este trabajo es investigar las propiedades mecánicas y tribológicas de refuerzos de dióxido de titanio (TiO2) en una matriz de aluminio (Al). Se utilizó aluminio de pureza 99,8% reforzado con TiO2 ensayándose cinco cantidades diferentes de dióxido de titanio. Se mezcló polvo de aluminio y TiO2 en un molino de bolas durante 30 min, utilizando un mezclador con eje descentrado. La mezcla se compactó mediante la técnica de prensado en frío a una presión de 250 MPa. Se utilizaron dos métodos diferentes para el sinterizado. El compactado en verde se sinterizó a 600 ºC durante 300 s en atmósfera ambiental con un sistema de inducción de ultra alta frecuencia (UHFIS) y con un horno convencional a 600 °C durante 1800 s. Las propiedades mecánicas y micro-estructurales de las muestras se compararon utilizando diferentes cantidades de refuerzo. La dureza máxima se observó para un refuerzo con 5% en peso de TiO2.

Palabras clave


Aluminio; TiO2; Sinterización por inducción; Metalurgia de polvos

Texto completo:


HTML PDF XML

Referencias


Aniolek, K., Kupka, M., Barylski, A. (2016). Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation. Wear 356–357, 23–29. https://doi.org/10.1016/j.wear.2016.03.007

Chen, G.X., Zhau, Z.R. (2003). Correlation of a negative friction-velocity slope with sequal generation under reciprocating conditions. Wear 255, 376–384. https://doi.org/10.1016/S0043-1648(03)00052-8

Chuang, L.-C., Luo, C.-H., Yang, S.-H. (2011). The structure and mechanical properties of thick rutile-TiO2 films using different coating treatments. Appl. Surf. Sci. 258 (1), 297–303. https://doi.org/10.1016/j.apsusc.2011.08.055

Çavdar, U., Gül?ahin, ?. (2014). Ultra high frequency induction welding of powder metal compact. Rev. Metal. 50 (2), e016. https://doi.org/10.3989/revmetalm.016

Çavdar, P.S., Çavdar, U. (2015). The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts. Rev. Metal. 51 (1), e036. https://doi.org/10.3989/revmetalm.036

Gökçe, A., Fındık, F. (2008). Mechanical and physical properties of sintered aluminum powders. J. Achiev. Mater. Manuf. Eng. (JAMME) 30 (2), 157–164. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.563.1942&rep=rep1&type=pdf.

Hassani, A., Bagherpour, E., Qods, F. (2014). Influence of pores on workability of porous Al/SiC composities fabricated through powder metallurgy mechanical alloying. J. Alloy. Compd. 591, 132–142. https://doi.org/10.1016/j.jallcom.2013.12.205

Khodabakhshi, F., Simchi, A., Kokabi, A.K., Gerlich, A.P., Nosko, M. (2014). Effects of post-annealing on the microstructure and mechanical properties of friction stir processed Al-Mg-TiO2 nanocomposites. Mater. Design 63, 30–41. https://doi.org/10.1016/j.matdes.2014.05.065

Leng, Y.X., Chen, J.Y., Yang, P., Sun, H., Huang, N. (2007). The microstructure and properties of titanium dioxide films synthesized by unbalanced magnetron sputtering. Nucl. Instrum. Meth. B 257 (1–2), 451–454. https://doi.org/10.1016/j.nimb.2007.01.096

Li, D., Chen, S., Wang, D., Li, Y., Shao, W., Long, Y., Liu, Z., Ringer, S.P. (2010). Thermo-analysis of nanocrystalline TiO2 ceramics during the whole sintering process using differential scanning calorimetry. Ceram. Int. 36 (2), 827–829. https://doi.org/10.1016/j.ceramint.2009.10.004

Lin, D.C., Wang, G.X., Srivatsan, T.S., Al-Hajri, M., Petraroli, M. (2003). Influence of titanium dioxide nanopowder addition on microstructural development and hardness of tin-lead solder. Mater. Lett. 57 (21), 3193–3198. https://doi.org/10.1016/S0167-577X(03)00023-5

Lumley, R. (2011). Fundamentals of Aluminium Metallurgy: Production, Processing and applications. 1st Edition, Woodhead Publishing Limited, p. 678. https://doi.org/10.1533/9780857090256

Mazaheri, M., Zahedi, A.M., Haghighatzadeh, M., Sadrnezhaad, S.K. (2009). Sintering of titania nanoceramic: Densification and grain growth. Ceram. Int. 35 (2), 685–691. https://doi.org/10.1016/j.ceramint.2008.02.005

Pinto, D., Bernardo, L., Amaro, A., Lopes, S. (2015). Mechanical properties of epoxy nanocomposities using titanium dioxide as reinforcement – A review. Constr. Build. Mater. 95, 506–524. https://doi.org/10.1016/j.conbuildmat.2015.07.124

Piwo?ski, I. (2007). Preparation method and some tribological properties of porous titanium dioxide layers. Thin Solid Films 515 (7–8), 3499–3506. https://doi.org/10.1016/j.tsf.2006.10.115

Pydi, H.P.R., Adhithan, B., Bakrudeen, A.S.B. (2013). Microstructure Exploration of the Aluminum-Tungsten Carbide Composite with different Manufacturing circumstances. IJSCE 2 (6), 257–261.

Raut, A., Choudhary, D. (2015). Nano enabled coatings makes aircraft invisible. Int. J. Pure Appl. Res. Eng. Techn. (IJPRET) 3 (9), 134–146. http://www.ijpret.com/publishedarticle/ 2015/4/IJPRET%20-%20MECH%20127.pdf.

Shin, J.H., Choi, H.J., Bae, D.H. (2013). Evolution of the interfacial layer and its effect on mechanical properties in TiO2 nanoparticle reinforced aluminium matrix composites. Mat. Sci. Eng. A-Struct. 578, 80–89. https://doi.org/10.1016/j.msea.2013.04.069

Singh, M., Goyal, K., Goyal, D.K. (2015). Fabrication performance of aluminium based metal matrix composites with SiO2 and TiO2 as reinforced particles. Universal J. Mech. Eng. 3 (4), 142–146. https://doi.org/10.13189/ujme.2015.030404

Sorkhe, Y.A., Aghajani, H., Tabrizi, A.T. (2014). Mechanical alloying and sintering of nanostructured TiO2 reinforced copper composite and its characterization. Mater. Design 58, 168–174. https://doi.org/10.1016/j.matdes.2014.01.040

Tubio, C.R., Guitián, F., Salguerio, J.R., Gil, A. (2015). Anatase and rutile TiO2 monodisperse microspheres by rapid thermal annealing: A method to avoid sintering at high temperaturas. Mater. Lett. 141, 203–206. https://doi.org/10.1016/j.matlet.2014.11.063

Xiang, N., Song, R., Zhao, J., Li, H., Wang, C., Wang, Z. (2015). Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy by micro-arc oxidation. T. Nonferr. Metal. Soc. 25 (10), 3323–3328. https://doi.org/10.1016/S1003-6326(15)63988-7




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revista@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es