Revista de Metalurgia, Vol 54, No 2 (2018)

Imanes Permanentes y su Producción por Pulvimetalurgia


https://doi.org/10.3989/revmetalm.121

Enrique Herraiz Lalana
School of Metallurgy and Materials, University of Birmingham - Departamento de Ciencia e Ingeniería de Materiales, Universidad Carlos III de Madrid, España
orcid http://orcid.org/0000-0001-7997-6281

Resumen


En este estudio se ha revisado la relación histórica entre la pulvimetalurgia y los imanes permanentes. La pulvimetalurgia es una técnica de fabricación basada en la compactación de polvos que son sinterizados para crear un producto sólido. Esta técnica fue utilizada en la producción de imanes permanentes por primera vez en el siglo XVIII y, hoy en día, la mayoría de materiales magnéticos permanentes se fabrican de esta forma. Las propiedades magnéticas dependen de la microestructura del producto final, de la alineación de los dominios magnéticos y de la presencia de porosidad; y la pulvimetalurgia permite un control adecuado de estos factores.

Palabras clave


Imanes permanentes; Materiales magnéticos; Pulvimetalurgia; Sinterización

Texto completo:


HTML PDF XML

Referencias


Blackford, J.R., Skouvlakis, G., Pursera, M., Koutsosa, V. (2012). Friction on ice: stick and slip. Faraday Discuss. 156, 243–254.

Campbell, P. (1994). Permanent Magnet Materials and their Application. Cambridge University Press, Cambridge.

Campos, M.F., Okumura, H., Hadjipanayis, G.C., Rodrigues, D., Landgraf, F.J.G., Neiva, A.C., Romero, S.A., Missell, F.P. (2004). Effect of several heat treatments on the microstructure and coercivity of SmCo5 magnets. J. Alloy Compd. 368 (1–2), 304–307.

Corfield, M.R. (2003). Production of sintered permanent magnets based on (Nd/Pr)Fe-B alloys. Ph.D. Thesis, University of Birmingham.

Croat, J.J., Herbst, J.F., Lee, R.W., Pinkerton, F.E. (1984). High-energy product Nd-Fe-B permanent magnets. Appl. Phiys. Lett. 44 (1), 148–149.

De Castro, J.A., Rodrigues, D., De Campos, M.F. (2014). Rare earths: from the extraction to the application. Proceedings 24th Workshop on Rare Earth Permanent Magnets and Their Applications (REPM2014), Annapolis, USA, pp. 358–360.

De Vos, K.J. (1969). Magnetism and Metallurgy. Vol. 2, Academic Press, London.

Degri, M.J.J. (2014). The Processing and Characterisation of Recycled NdFeB-type Sintered Magnets. Ph.D. Thesis, University of Birmingham.

Dillon, H.M. (2014). Effects of heat treatment and processing modifications on microstructure in alnico 8H permanent magnet alloys for high temperature applications. M.Sc Thesis, Iowa State University.

Doser, M., Ribitch, R.W., Croat, J.J., Panchanathan, V. (1991). Bonded anisotropic Nd-Fe-B magnets from rapidly solidified powders. J. Appl. Phys. 69 (8), 5835–5837.

EPMA (2017). Economic Advantages. Accessed 18/04/2018. https://www.epma.com/powder-metallurgy-economic-advantages.

EPMA (2008). Introduction to Powder Metallurgy: The Process and its Products. European Powder Metallurgy Association, Shrewsbury.

Fidler, J., Knoch, K.G. (1989). Electron microscopy of Nd-Fe-B based magnets. J. Magn. Magn. Mater. 80 (1), 48–56.

German, R.M. (1996). Sintering Theory and Practice. Wiley-Interscience Publication, New York.

German, R.M., Suri, P., Park, S.J. (2009). Review: liquid phase sintering. J. Mater. Sci. 44 (1), 1–39. https://doi.org/10.1007/s10853-008-3008-0.

Gupta, K.M. (2015). Engineering Materials: Research, Applications and Advances. CRC Press, Boca Raton, USA.

Gutfleisch, O., Kirchner, A., Grünberger, W., Hinz, D., Schäfer, R., Schultz, L., Harris, I.R., Müller, K.H. (1998). Backward extruded NdFeB HDDR ring magnets. J. Magn. Magn. Mater. 183 (3), 359–364.

Gutfleisch, O., Müller, K.H., Khlopkov, K., Wolf, M., Yan, A., Schäfer, R., Gemming, T., Schultz, L. (2006). Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets. Acta Materialia 54 (4), 997–1008.

Hakker, P.J., Weber, G.H. (1958). Method of making a permanent magnet. U.S. Patent 2,837,483.

Harris, I.R., Evans, J., Nyholm, P.S. (1979). Rare earth metal alloy magnets. British Patent 1,554,384.

Harris, I.R., Noble, C., Bailey, T. (1985). The hydrogen decrepitation of an Nd15Fe77B8 magnetic alloy. J. Less Common Met. 106 (1), L1-L4.

Heck, C. (1974). Magnetic Materials and Their Applications. Butterworths & Co., London.

Hsu, S., Wang, K., Su, L. (1987). Studies on heat treatment for Nd-Fe-B magnets. IEEE T. Magn. 23 (5), 2515–2517.

Iwama, Y., Takeuchi, M. (1974). Spinodal Decomposition in Alnico 8 Magnet alloy. T. Jpn. I. Met. 15 (5), 371–377.

Kaneko, Y., Kuniyoshi, F., Ishigaki, N. (2006). Proven technologies on high-performance Nd-Fe-B sintered magnets. J. Alloy Compd. 408–412, 1344–1349.

Kittel, C., Nesbitt, E.A., Shockley, W. (1950). Theory of Magnetic Properties and Nucleation in Alnico V. Phys. Rev. 77, 839–840.

Lee, R.W. (1985). Hot-pressed neodymium-iron-boron magnets. Appl. Phys. Lett. 46 (8), 790–791.

Li, W.F., Ohkubo, T., Hono, K., Sagawa, M. (2009). The origin of coercivity decrease in fine grained Nd–Fe–B sintered magnets. J. Magn. Magn. Mater. 321 (8), 1100–1105.

Li, X.T., Yue, M., Liu, W.Q., Li, X.L., Yi, X.F., Huang, X.L., Zhang, D.T., Chen, J.W. (2015). Large batch recycling of waste Nd-Fe-B magnets to manufacture sintered magnets with improved magnetic properties. J. Alloys Compd. 649, 656–660.

Liu, N.C., Kim, A.S. (1990). Abnormal grain growth in sintered Nd-Fe-B magnets. J. Appl. Phys. 67 (9), 4629–4631.

Liu, J.F., Chui, T., Dimitrov, D., Hadjipanayis, G.C. (1998). Abnormal temperature dependence of intrinsic coercivity in Sm(Co,Fe,Cu,Zr)z powder materials. Appl. Phys. Lett. 73 (20), 3007–3009.

Liu, J.F., Ding, Y., Hadjipanayis, G.C. (1999a). Effect of iron on the high temperature magnetic properties and microstructure of Sm(Co,Fe,Cu,Zr)z permanent magnets. J. Appl. Phys. 85 (3), 1670–1674.

Liu, J.F., Ding, Y., Zhang, Y., Dimitrar, D., Zhang, F., Hadjipanayis, G.C. (1999b). New rare-earth permanent magnets with an intrinsic coercivity of 10 kOe at 500 °C. J. Appl. Phys. 85 (8), 5660–5662.

Liu, J.F., Zhang, Y., Dimitrov, D., Hadjipanayis, G.C. (1999c). Microstructure and high temperature magnetic properties of Sm(Co,Fe,Cu,Zr)z (z=6.7–9.1) permanent magnets. J. Appl. Phys. 85 (5), 2800–2804.

Mazda, F.F. (1989). Electronics Engineer’s Reference Book. Butterworth-Heinemann, London.

McGuiness, P.J., Williams, A.J., Harris, I.R., Rozendaal, E., Ormerod, J. (1989). Sintering behaviour of NdFeB magnets. IEEE T. Magn. 25 (5), 3773–3775.

McCaig, M. (1977). Permanent Magnets in Theory and Practice. Pentech Press, London.

Mishima, T. (1931). Magnet steel containing nickel and aluminium. U.S. Patent 2,027,994.

Nesbitt, E.A., Wernick, J.H. (1973). Rare Earth Permanent Magnets. Academic Press, New York.

Nothnagel, P., Muller, K.H., Eckert, D., Handstein, A. (1991). The influence of particle size on the coercivity of sintered NdFeB magnets. J. Magn. Magn. Mater. 101 (1–3), 379–381.

Oesterreicher, K., Oesterreicher, H. (1984). Structure and Magnetic Properties of Nd2Fe14BH2.7. Phys. Status Solidi A 85 (1), K61-K64.

Ormerod, J. (1988). Permanent Magnet Materials. IEE Colloquium Permanent Magnet Machine.

Overshott, K.J. (1991). Magnetism: It is Permanent. IEE Proc.-A 138 (1), 22–30.

Pei, W., He, C., Lian, F., Zhou, G., Yang, H. (2002). Structures and magnetic properties of sintered Nd-Fe-B magnets produced by strip casting technique. J. Magn. Magn. Mater. 239 (1–3), 475–478.

Ramakrishnan, P. (1983). History of powder metallurgy. IJHS 18 (1), 109–114. http://www.insa.nic.in/writereaddata/UpLoadedFiles/IJHS/Vol18_1_6_PRamakrishnan.pdf.

Ramesh, R., Thomas, G., Ma, B.M. (1988). Magnetization reversal in nucleation controlled magnets. II. Effect of grain size and size distribution on intrinsic coercivity of Fe-Nd-B magnets. J. Appl. Phys. 64 (11), 6416–6423.

Reed, J.S. (1995). Principles of Ceramic Processing. John Wiley & Sons, New York.

Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H., Matsuura, Y. (1984a). New Material for Permanent Magnets on a Base of Nd and Fe. J. Appl. Phys. 55 (6), 2083–2087.

Sagawa, M., Fujimura, S., Yamamoto, H., Matsuura, Y, Hiraga, K. (1984b). Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans. Magn. 20 (5), 1584–1589.

?lusarek, B., Zakrzewski, K. (2012). Magnetic properties of permanent magnets for magnetic sensors working in wide range of temperature. Przeglad Elektrotechniczny 88 (7), 123–126.

Smithells, J.C. (1976). Metals Reference Book. Butterworth-Heinemann, Burlington.

Strnat, K., Hoffer, G., Olson, J., Ostertag, W. (1967). A family of new cobalt-base permanent magnet materials. J. Appl. Phys. 38 (3), 1001.

Strnat, K.J. (1978). Rare-earth magnets in present production and development. J. Magn. Magn. Mater. 7 (1–4), 351–360.

Strnat, K.J. (1990). Modern permanent magnets for applications in electro-technology. P. IEEE 78 (6), 923–937.

Stuyts, A.L., Hoekstra, A.H., Weber, G.H., Rathenau, G.W. (1959). Making anisotropic permanent magnets. U.S. Patent 2,900,344 A.

Tang, W., Zhou, L., Kassen, A., Palasyuk, A., White, E., Dennis, K.W., Kramer, M., McCallum, R.W., Anderson, I. (2015). New Alnico Magnets Fabricated from Pre-Alloyed Gas-Atomized Powder Through Diverse Consolidation Techniques. IEEE Trans. Magn. 51 (11), 1–3.

Tawara, Y., Senno, H. (1972). Sintered magnets of copper- and iron-modified cerium cobalt. IEEE Trans. Magn. 8 (3), 560–561.

Thümmler, F., Oberacker, R. (1993). Introduction to Powder Metallurgy. The Institute of Materials, London, CRC Press.

Uestuener, K., Katter, M., Rodewald, W. (2006). Dependence of the Mean Grain Size and Coercivity of Sintered Nd-Fe-B Magnets on the Initial Powder Particle Size. IEEE Trans. Magn. 42, 2897–2899.

Vacuumschmelze (2012). Magnetic Field Pressing Technology. Accessed 20/03/2018. http://www.vacuumschmelze.com/en/research-innovation/process-technology/permanent-magnets-systems/magnetic-field-pressing-technology.html.

Verma, A., Pandey, O.P., Sharma, P. (2000). Strontium ferrite permanent magnet – An overview. IJEMS 7, 364–369. http://nopr.niscair.res.in/bitstream/123456789/24430/1/IJEMS%207(5-6)%20364-369.pdf.

Vicente, C.M.S., André, P.S., Ferreira, R.A.S. (2012). Simple measurement of surface free energy using a web cam. Rev. Bras. Ensino Fis. 34 (3), 1–5.

Wallace, W., Craig, R., Gupta, H., Hirosawa, S., Pedziwiatr, A., Oswald, E., Schwab, E. (1984). High energy magnets from PrCo5. IEEE Trans. Magn. 20 (5), 1599–1601.

Went, J.J., Rathenau, G.W., Gorter, E.W., Oosterthour, G.W. (1952). Ferroxdure, a class of permanent magnetic materials. Philips Techn. Rev. 13 (7), 194–208

.

Wiesinger, G., Hilscher, G., Grossinger, R. (1987). Effect of hydrogen absorption on the magnetic properties of Nd15Fe77B8. J. Less Common Met. 131 (1–2), 409–417.

Williams, A.J. (1994). Hydrogen absorption and desorption studies on NdFeB type alloys used for the production of permanent magnets. PhD Thesis, University of Birmingham.

Wilson, B. (1779). V. Account of Dr. Knight’s method of making artificial loadstones. Phil. Trans. R. Soc. Lond. 69, 51–53.

Yang, J.P., Pi, S.H., Kim, Y.P., Kim, Y.G. (1993). Effect of Cyclic Heat Treatment on Coercivity and Microstructure of Sintered Nd15Fe77B8 Magnets. J. Mater. Sci. Eng. B 18 (1), 78–82.

Zakotnik, M., Devlin, E., Harris, I.R., Williams, A.J. (2006). Hydrogen decrepitation and recycling of Nd-Fe-B-type sintered magnets. Proceedings of the 19th Workshop on Rare Earth Permanent Magnets and Their Applications, 289–295, Beijing, China.

Zakotnik, M., Harris, I.R., Williams, A.J. (2008). Possible methods of recycling Nd-Fe-B-type sintered magnets using the HD/degassing process. J. Alloy Compd. 450 (1–2), 525–531.

Zakotnik, M., Harris, I.R., Williams, A.J. (2009). Multiple recycling of Nd-Fe-B-type sintered magnets. J. Alloys Compd. 469 (1–2), 314–321.

Zlatkov, B.S., Nikolic, M.V., Aleksic, O., Danninger, H., Halwax, E. (2009). A study of magneto-crystalline alignment in sintered barium hexaferrite fabricated by powder injection molding. J. Magn. Magn. Mater. 321 (4), 330–335.




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revista@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es