Revista de Metalurgia, Vol 54, No 3 (2018)

Evolución microestructural y envejecimiento dinámico por deformación en la aleación Mg-6%Gd- 1%Zn durante ensayos a tracción y compresión a temperaturas intermedias


https://doi.org/10.3989/revmetalm.124

Gerardo Garcés
Departamento de Metalurgia Física, Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), España
orcid http://orcid.org/0000-0002-6896-7475

Pablo Pérez
Departamento de Metalurgia Física, Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), España
orcid http://orcid.org/0000-0002-4218-2573

Rafael Barea
Departamento de Ingeniería Industrial, Universidad Nebrija, España
orcid http://orcid.org/0000-0002-6784-6110

Bryan W. Chávez
Departamento de Ingeniería Industrial, Universidad Nebrija, España
orcid http://orcid.org/0000-0002-8015-1153

Judit Medina
Departamento de Metalurgia Física, Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), España
orcid http://orcid.org/0000-0002-3898-0935

Paloma Adeva
Departamento de Metalurgia Física, Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), España
orcid http://orcid.org/0000-0002-9111-8893

Resumen


La aleación Mg-6%Gd-1%Zn muestra el fenómeno de serrado durante la deformación a temperaturas intermedias debido al proceso de envejecimiento dinámico provocado por la presencia de átomos de soluto en solución sólida y dislocaciones móviles. Aunque la aleación tiene una textura al azar, se observa un comportamiento diferente en tracción y en compresión. El límite elástico y el endurecimiento es mayor cuando la aleación se ensaya en compresión. Durante la deformación a temperaturas intermedias se ha observado la activación de dislocaciones tipo < a > y maclas de tensión, independientemente del signo de la carga. Sin embargo, la fracción en volumen de maclas es siempre mayor cuando el material se somete a compresión. A temperaturas intermedias, los átomos de Gd y Zn anclan tanto las dislocaciones como las maclas. Por encima de 250 ºC, el fenómeno de serrado desaparece y la presencia de precipitados g´ y g´´ en el plano basal aumenta el endurecimiento.

Palabras clave


Aleaciones de magnesio; Envejecimiento dinámico; Evolución microestructural; Maclado

Texto completo:


HTML PDF XML

Referencias


Agnew, S.R., Brown, D.W., Tomé, C.N. (2006). Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in-situ neutron diffraction. Acta Mater. 54 (18), 4841–4852. https://doi.org/10.1016/j.actamat.2006.06.020

Agnew, S.R., Mulay, R.P., Polesak, F.J., Calhoun, C.A., Bhattacharyra, J.J., Clausen, B. (2013). In-situ neutron diffraction and polycrystal plasticity modeling of a Mg–Y–Nd–Zr alloy: Effects of precipitation on individual deformation mechanisms. Acta Mater. 61 (10), 3769–3780. https://doi.org/10.1016/j.actamat.2013.03.010

Ball, E.A., Prangnell, P.B. (1994). Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scripta Metall. Mater. 31 (2), 111–116. https://doi.org/10.1016/0956-716X(94)90159-7

Cai, X., Fu, H., Guo, J., Peng, Q. (2014). Negative Strain- Rate Sensitivity of Mg Alloys Containing 18R and 14H Long-Period Stacking-Ordered Phases at Intermediate Temperatures. Metall. Mater. Trans. A 45 (9), 3703–3707. https://doi.org/10.1007/s11661-014-2348-4

Capek, J., Mathis, K., Clausen, B., Barnett, M. (2017). Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium. Acta Mater. 130, 319–328. https://doi.org/10.1016/j.actamat.2017.03.017

Christodoulou, N., Chow, C., Turner, P., Tomé, C., Klassen, R. (2002). Analysis of Steady-State Thermal Creep of Zr-2.5Nb Pressure Tube Material. Metall. Mater. Trans. A 33 (4), 1103–1115. https://doi.org/10.1007/s11661-002-0212-4

Clausen, B., Tomé, C.N., Brown, D.W., Agnew, S.R. (2008). Reoritation and stress relaxation due to twinning: Modeling and experimental characterization for Mg. Acta Mater. 56 (11), 2456–2468. https://doi.org/10.1016/j.actamat.2008.01.057

Couling, S.L. (1959). Yield points in a dilute magnesium-thorium alloy. Acta Metall. 7 (2), 133–134. https://ac.els-cdn. com/000161605990121X/1-s2.0-000161605990121X-main. pdf?_tid=7f605387-13bc-42a4-84b7-20b66f273f2f&acdnat =1530689365_46a9e777b153989b946b48fbcf25e6cf.

El Kadiri, H., Oppedal, A.L. (2010). A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects. J. Mech. Phys. Solids 58 (4), 613–624. https://doi.org/10.1016/j.jmps.2009.12.004

Fang, X.Y., Yi, D.Q., Nie, J.F. (2009). The serrated flow behaviour of Mg-Gd-(Mn-Sc) Alloys. Metall. Mater. Trans. A 40, 2761–2771. https://doi.org/10.1007/s11661-009-9967-1

Gao, L., Chen, R.S., Han, E.H. (2009). Characterization of dynamic strain ageing in Mg- 3.11wt.%Gd alloy. R.A. Nyberg, S.R. Agnew, N.R. Neelameggham, M.O. Pekguleryuz (Eds.), Annual conference of TMS, San Francisco, USA, pp. 269–272.

Garcés, G., O-orbe, E., Pérez, P., Denks, I.A., Adeva, P. (2009). Evolution of internal strain during plastic deformation in magnesium matrix composites. Mat. Sci. Eng. A-Struct. 523 (1–2), 21–26. https://doi.org/10.1016/j.msea.2009.06.026

Garcés, G., O-orbe, E., Pérez, P., Klaus, M., Genzel, C., Adeva, P. (2012a). Influence of SiC particles on compressive deformation of magnesium matrix composites. Mat. Sci. Eng. A-Struct. 533, 119–123. https://doi.org/10.1016/j.msea.2011.10.103

Garcés, G., Onorbe, E., Dobes, F., Pérez, P., Antoranz, J.M., Adeva, P. (2012b). Effect of microstructure on creep behaviour of cast Mg97Y2Zn1 (at.%) alloy. Mat. Sci. Eng. A-Struct. 539, 48–55. https://doi.org/10.1016/j.msea.2012.01.023

Garcés, G., Mu-oz-Morris, M.A., Morris, D.G., Pérez, P., Adeva P. (2015). An examination of strain ageing in a Mg-Y-Zn alloy containing Gd. J. Mater. Sci. 50 (17), 5769–5776. https://doi.org/10.1007/s10853-015-9124-8

Gavras, S., Zhu, S.M., Nie, J.F., Gibson, M.A., Easton M.A. (2016). On the microstructural factors affecting creep resistance of die-cast Mg–La-rare earth (Nd, Y or Gd) alloys. Mat. Sci. Eng. A-Struct. 675, 65–75. https://doi.org/10.1016/j.msea.2016.08.046

Geng, J., Chun, Y.B., Stanford, N., Davies, C.H.J., Nie, J.F., Barnett, M.R. (2011). Processing and properties of Mg–6Gd–1Zn–0.6Zr: Part 2. Mechanical properties and particle twin interactions. Mat. Sci. Eng. A-Struct. 528 (10–11), 3659–3665. https://doi.org/10.1016/j.msea.2011.01.024

Gharghouri, M.A., Weatherly, G.C., Embury, J.D., Root, J. (1999). Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction. Philos. Mag. A 79 (7), 1671–1695. https://doi.org/10.1080/01418619908210386

Griffiths, D. (2015). Explaining texture weakening and improved formability in magnesium rare earth alloys. Mater. Sci. Technol. 31 (1), 10–24. https://doi.org/10.1179/1743284714Y.0000000632

Hantzsche, K., Bohlen, J., Wendt, J., Kainer, K.U., Yi, S.B., Letzig, D. (2010). Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scripta Mater. 63 (7), 725–730. https://doi.org/10.1016/j.scriptamat.2009.12.033

He, S.H., Zeng, X.Q., Peng, L.M., Gao, X., Nie, J.F., Ding, W.J. (2007). Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J. Alloys Compd. 427 (1–2), 316–323. https://doi.org/10.1016/j.jallcom.2006.03.015

Herrera-Solaz, V., Hidalgo-Manrique, P., Pérez-Prado, M.T., Letzig, D., Llorca, J., Segurado, J. (2014). Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys. Mater. Lett. 128, 199–203. https://doi.org/10.1016/j.matlet.2014.04.144

Hidalgo-Manrique, P., Robson, J.D., Pérez-Prado, M.T. (2017). Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study. Acta Mater. 124, 456–467. https://doi.org/10.1016/j.actamat.2016.11.019

Humphreys, A.O., Liu, D., Toroghinejad, M.R., Essadiqi, E., Jonas, J.J. (2003). Warm rolling behaviour of low carbon steels. Mater. Sci. Technol. 19 (6), 709–714. https://doi.org/10.1179/026708303225002848

Jiang, L., Jonas, J.J., Mishra, R. (2011). Effect of dynamic strain aging on the appearance of the rare earth texture component in magnesium alloys. Mat. Sci. Eng. A-Struct. 528 (21), 6596–6605. https://doi.org/10.1016/j.msea.2011.05.027

Kada, S.R., Lynch, P.A., Kimpton, J.A., Barnett, M.R. (2016). In-situ X-ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy. Acta Mater. 119, 145–156. https://doi.org/10.1016/j.actamat.2016.08.022

Karaman, I., Sehitoglu, H., Beaudoin, A.J., Chumlyakov, Y.I., Maier, H.J., Tomé, C.N. (2000). Modeling the deformation behaviour of hadfield steel single and polycrystals due to twinning and slip. Acta Mater. 48 (9), 2031–2047. https://doi.org/10.1016/S1359-6454(00)00051-3

Kelley, E.W, Hosford, W.F. (1968). Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5–13.

Keshavarz, Z., Barnett, M.R. (2006). EBSD analysis of deformation modes in Mg–3Al– 1Zn. Scripta Mater. 55 (10), 915–918. https://doi.org/10.1016/j.scriptamat.2006.07.036

Lentz, M., Klaus, M., Wanger, M., Fahreson, C., Beyerlein, I.J., Zecevic, M., Reimers, W., Knezevic, M. (2015). Effect of age hardening on the deformation behavior of a Mg-Y-Nd alloy: In-situ X-ray diffraction and crystal plasticity modeling. Mat. Sci. Eng. A-Struct. 628, 396–409. https://doi.org/10.1016/j.msea.2015.01.069

Li, Z., Zheng, J., Chen, B. (2016). Unravelling the Structure of ?≤ in Mg-Gd-Zn: An Atomic-scale HAADF-STEM Investigation. Mater. Charact. 120, 345–348. https://doi.org/10.1016/j.matchar.2016.08.011

Nie, J.F., Gao, X., Zhu, S.M. (2005). Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scripta Mater. 53 (9), 1049–1053. https://doi.org/10.1016/j.scriptamat.2005.07.004

Nie, J.F., Oh-ishi, K., Gao, X., Hono, K. (2008). Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy. Acta Mater. 56 (20), 6061–6076. https://doi.org/10.1016/j.actamat.2008.08.025

Nie, J.F., Zhu, Y.M., Liu, J.Z., Fang, X.Y. (2013). Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science 340 (6135), 957–960. https://doi.org/10.1126/science.1229369 PMid:23704567

Reed-Hill, R.E. (1973). Role of deformation twinning in determining the mechanical properties of metals: The Inhomogeneity of Plastic Deformation. ASM International, Materials Park, OH, USA, p. 285. .

Stanford, N., Atwell, D., Beer, A., Davies, C., Barnett, M.R. (2008). Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta Mater. 59 (7), 772–775. https://doi.org/10.1016/j.scriptamat.2008.06.008

Stanford, N., Sabirov, I., Sha, G., La Fontaine, A., Ringer, S., Barnett, M. (2010). Effect of Al and Gd Solutes on the Strain Rate Sensitivity of Magnesium Alloys. Metall. Mater. Trans. A 41 (3), 734–743. https://doi.org/10.1007/s11661-009-0107-8

Somekawa, H., Watanabe, H., Althaf Basha, D., Singh, A., Inoue T. (2017). Effect of twin boundary segregation on damping properties in magnesium alloy. Scripta Mater. 129, 35–38. https://doi.org/10.1016/j.scriptamat.2016.10.019

Tomsett, D.I., Bevis, M. (1969). The formation of stacking faults in {10–12} twins in zinc as a result of slip dislocation-deformation twin interactions. Philos. Mag. A 19 (159), 533–537. https://doi.org/10.1080/14786436908216310

Tu, J., Zhang, S. (2016). On the {10–12} twinning growth mechanism in hexagonal close-packed metals. Mater. Design 96, 143–149. https://doi.org/10.1016/j.matdes.2016.02.002

Zhongjun, W., Weiping, J., Jianzhong, C. (2007). Study on the Deformation Behavior of Mg-3.6% Er Magnesium Alloy. J. Rare Earth 25 (6), 744–748. https://doi.org/10.1016/S1002-0721(08)60019-8

Wang, H., Wang, Q.D., Boehlert, C.J., Yin, D.D., Yuan, J. (2015). Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy. Mater Charact. 99, 25–37. https://doi.org/10.1016/j.matchar.2014.11.006

Wang, F., Agnew, S.R. (2016). Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int. J. Plasticity 81, 63–86. https://doi.org/10.1016/j.ijplas.2016.01.012

Wu, D., Chen, R.S., Han, E.H. (2012). Serrated flow and tensile properties of a Mg–Gd–Zn alloy. Mat. Sci. Eng. A-Struct. 532, 267–274. https://doi.org/10.1016/j.msea.2011.10.090

Yuan, J., Wang, Q., Yin, D., Wang, H., Chen, C., Ye, B. (2013). Creep behavior of Mg–9Gd–1Y–0.5Zr (wt.%) alloy piston by squeeze casting. Mater. Charact. 78, 37–46. https://doi.org/10.1016/j.matchar.2013.01.012

Zhu, S.M., Nie, J.F. (2004). Serrated flow and tensile properties of a Mg–Y–Nd alloy. Scripta Mater. 50 (1), 51–55. https://doi.org/10.1016/j.scriptamat.2003.09.039

Zhu, S.M., Gibson, M.A., Easton, M.A., Nie, J.F. (2010). The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys. Scripta Mater. 63 (7), 698–703. https://doi.org/10.1016/j.scriptamat.2010.02.005

Zhu, Y.M., Morton, A.J., Nie, J.F. (2012). Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 60 (19), 6562–6572. https://doi.org/10.1016/j.actamat.2012.08.022

Zhu, Y.M., Bian, M.Z., Nie, J.F. (2017). Tilt boundaries and associated solute segregation in a Mg-Gd alloy. Acta Mater.127, 505–518. https://doi.org/10.1016/j.actamat.2016.12.032

Zhu, Y.M, Xu, S.W., Nie J.F. (2018). {1011} Twin boundary structure in a Mg-Gd alloy. Acta Mater. 143, 1–12. https://doi.org/10.1016/j.actamat.2017.09.067




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es