Revista de Metalurgia, Vol 54, No 4 (2018)

Estudios de evolución estructural de soluciones solidas de BaTiO3 dopadas con Er3+ (método de reacción en estado sólido


https://doi.org/10.3989/revmetalm.129

Miguel Pérez-Labra
Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, México
orcid http://orcid.org/0000-0001-9882-6932

Francisco R. Barrientos-Hernández
Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, México
orcid http://orcid.org/0000-0001-5459-7162

Juan P. Hernández-Lara
Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, México
orcid http://orcid.org/0000-0003-2937-7349

José A. Romero-Serrano
Metallurgy and Materials Department, ESIQIE-IPN. UPALM, México
orcid http://orcid.org/0000-0001-9324-5602

Martín Reyes-Pérez
Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, México
orcid http://orcid.org/0000-0003-3843-2397

Víctor E. Reyes-Cruz
Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State., España
orcid http://orcid.org/0000-0003-2984-850X

Julio C. Juárez-Tapia
Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, España
orcid http://orcid.org/0000-0001-7058-1670

Gustavo Urbano-Reyes
Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, México
orcid http://orcid.org/0000-0001-5461-4030

Resumen


Se sintetizaron composiciones de BaTiO3 dopadas con erbio empleando el método convencional de reacción en estado sólido en atmosfera de aire, de acuerdo a la formula general Ba1-xErxTi1-x/4O3 y x = 0,0; 0,003; 0,005; 0,01; 0,05; 0,1; 0,15; 0,20; 0,25; 0,30; 0,35 Er3+ (% peso). Las muestras de BaTiO3 dopadas con Er3+ fueron preparadas usando carbonato de bario [BaCO3], óxido de titanio [TiO2] y óxido de erbio [Er2O3] como precursores. Los polvos fueron decarbonatados a 900 °C por 12 h y sinterizados a 1400 °C por 12 h. La evolución estructural de las soluciones sólidas fue monitoreada por difracción de rayos X (DRX), espectroscopia Raman (ER), espectroscopia de infrarrojo (EI) y microscopía electrónica de barrido (MEB-EDS). Los resultados mostraron que la fase cristalina de las partículas obtenidas fue BaTiO3 predominantemente tetragonal. Se encontró una fase secundaria identificada como pirocloro (Er2Ti2O7) cuando el contenido de Er3+ en las muestras fue mayor que 0,05 % peso. El límite de solubilidad de Er3+ en la estructura cristalina del BaTiO3 se alcanzó cuando x fue = 0,05. Los resultados obtenidos por MEB-EDS indicaron la incorporación de erbio en la estructura cristalina del BaTiO3. Los resultados de EI no mostraron bandas de contaminación de grupos O-H en los productos obtenidos.

Palabras clave


BaTiO3; Dopaje; Er3+; Sinterización

Texto completo:


HTML PDF XML

Referencias


Asiaie, R., Zhu, W., Akbar, S.A., Dutta, P.K. (1996). Characterization of submicron particles of BaTiO3. Chem. Mater. 8 (1), 226–234. https://doi.org/10.1021/cm950327c

Carter, C.B., Norton, M.G. (2007). Ceramics Materials, Science and Engineering. 1st. Ed. Springer, USA, pp. 562-565.

Chan, H.M., Harmer, M.R., Smyth, D.M.L. (1986). Compensating Defects in Highly Donor-Doped BaTiO3. J. Am. Ceram. Soc. 69 (6), 507-510. https://doi.org/10.1111/j.1151-2916.1986.tb07453.x

Dobal, P.S., Katiyar, R.S. (2002). Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy. J. Raman Spectrosc. 33 (6), 405-423. https://doi.org/10.1002/jrs.876

Dunbar, T.D., Warren, W.L., Tuttle, B.A., Randall, C.A., Tsur, Y. (2004). Electro paramagnetic resonance investigations of lanthanide-doped barium titanate: dopant site occupancy. J. Phys. Chem. B 108 (3), 908-917. https://doi.org/10.1021/jp036542v

Durán, P., Capel, F., Gutierrez, D., Tartaj, J., Ba-ares, M.A., Moure, C. (2001). Metal citrate polymerized complex thermal decomposition leading to the synthesis of BaTiO3: effects of the precursor structure on the BaTiO3 formation mechanism. J. Mater. Chem. 11, 1828-1836. https://doi.org/10.1039/b010172i

Garrido-Hernández, A., García-Murillo, A., Carrillo-Romo, F. de J., Cruz-Santiago, L.A., Chadeyron, G., Morales- Ramírez, A. de J., Velumani, S. (2014). Structural studies of BaTiO3:Er3+and BaTiO3:Yb3+powders synthesized by hydrothermal method. J. Rare Earth 32 (11), 1016-1021. https://doi.org/10.1016/S1002-0721(14)60176-9

Hao, J., Zhang, Y., Wei, X. (2011). Electric-induced and modulation of upconversion photoluminescence in epitaxial Ba- TiO3:Yb/Er thin films. Angew. Chem. Int. Edit. 50 (30), 6876-6880. https://doi.org/10.1002/anie.201101374 PMid:21656618

Hernández Lara, J.P., Pérez Labra, M., Barrientos Hernández, F.R., Romero Serrano, J.A., Ávila Dávila, E.O., Thangarasu, P., Hernández Ramirez, A. (2017). Structural Evolution and Electrical Properties of BaTiO3 Doped with Gd3+. Mater. Res. 20 (2), 538-542. https://doi.org/10.1590/1980-5373-mr-2016-0606

Hwang, U.Y., Park, H.S., Koo, K.K. (2004). Low-temperature synthesis of fully crystallized spherical BaTiO3; particles by the gel-sol method. J. Am. Ceram. Soc. 87 (12), 2168-2174. https://doi.org/10.1111/j.1151-2916.2004.tb07486.x

Jaffe, B. (1971). Piezoelectric Ceramics. 1st Edition, Academic Press, London, pp. 53-70.

Kao, K.C. (2004). Dielectric Phenomena in Solids. 1st Edition, Elsevier Academic Press, USA, pp. 221-224.

Li, Y.H., Wang, Y.Q., Xu, C.P., Valdez, J.A., Tang, M., Sickafus, K.E. (2012). Microstructural evolution of the pyrochlore compound Er2Ti2O7 induced by lightion irradiations. Nucl. Instrum. Meth. Phys. Res. B 286, 218–222. https://doi.org/10.1016/j.nimb.2011.12.034

Markom, A.M., Paul, M.C., Dhar, A., Das, S., Pal, M., Bhadra, S.K., Dimyati, K., Yasin, M., Harun, S.W. (2017). Performance comparison of enhanced Erbium–Zirconia–Yttria– Aluminum co-doped conventional erbium-doped fiber amplifiers. Optik 132, 75–79. https://doi.org/10.1016/j.ijleo.2016.12.041

Mitic, V.V., Nikolic, Z.S., Pavlovic, V.B., Paunovic, V., Miljovic, M., Jordovic, B., Zivkovic, L. (2010). Influence of rare-earth dopants on barium titanate ceramics microstructure and corresponding electrical properties. J. Am. Ceram. Soc. 93 (1), 132-137. https://doi.org/10.1111/j.1551-2916.2009.03309.x

Moulson, A.J., Herbert, J.M. (2003). Electroceramics. 2nd Edition, John Wiley and Sons, England, pp. 311-315. https://doi.org/10.1002/0470867965

Pinceloup, P., Courtois, C., Vicens, J., Leriche, A., Thierry, B. (1999). Evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanate powders. J. Eur. Ceram. Soc. 19 (6-7), 973-977. https://doi.org/10.1016/S0955-2219(98)00356-2

Rousseau, D.L., Bauman, R.P., Porto. S.P.S. (1981). Normal mode determination in crystals. J. Raman Spectrosc. 10 (1), 253-290. https://doi.org/10.1002/jrs.1250100152

Takada, K., Chang, E., Smyth, D.M. (1987). Rare-earth addition to BaTiO3. Adv. Ceram. 19, 147-152.

Tsur, Y., Dunbar, T.D., Randall, C.A. (2001). Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7 (1), 25-34. https://doi.org/10.1023/A:1012218826733

Venkateswaran, U.D., Naik, V.M., Naik, R. (1998). High-pressure Raman studies of polycrystalline BaTiO3. Phys. Rev. B 58 (21), 14256-14260. https://doi.org/10.1103/PhysRevB.58.14256

Vijatovic´, M.M., Stojanovic´, B.D., Bobic´, J.D., Ramoska, T., Bowen, P. (2010). Properties of lanthanum doped BaTiO3 produced from nanopowders. Ceram. Int. 36 (6), 1817-1824. https://doi.org/10.1016/j.ceramint.2010.03.010

Yan-Xia, L., Yao, X., Wang, X.-Sh., Hao, Y.-B. (2012). Studies of dielectric properties of rare earth (Dy, Tb, Eu) doped barium titanate sintered in pure nitrogen. Ceram. Int. 38 (Supp. 1), S29-S32. https://doi.org/10.1016/j.ceramint.2011.04.042

Yashima, M., Ohtake, K., Kakihana, M., Arashi, H., Yoshimura, M. (1996). Determination of Tetragonal–Cubic Phase Boundary of Zr1-XRXO2-X/2 (R = Nd, Sm, Y, Er and Yb) by Raman Scattering. J. Phys. Chem. Solids 57 (1), 17-24. https://doi.org/10.1016/0022-3697(95)00085-2

Yongping, P., Wenhu, Y., Shoutian, Ch. (2007). Influence of rare earths on electric properties and microstructure of barium titanate ceramics. J. Rare Earth 25 (Supp, 1), 154-157. https://doi.org/10.1016/S1002-0721(07)60546-8

Zhang, Y., Hao, J., Mak, C.L., Wei, X. (2011). Effects of site substitutions and concentration on upconversion luminescence of Er3+-doped perovskite titanate. Opt. Express 19 (3), 1824-1829. https://doi.org/10.1364/OE.19.001824 PMid:21368996

Zhang, Y., Hao, J. (2013). Color-tunable upconversion luminescence of Yb3+, Er3+, and Tm3+ tri-doped ferroelectric BaTiO3 materials. J. Appl. Phys. 113 (8), 184112.1-184112.4.

Zhao, X., Ma, Z., Xiao, Z., Chen, G. (2006). Preparation and characterization on nano-sized barium titanate poder doped with lanthanum by sol-gel process. J. Rare Earth 24 (1), 82-85. https://doi.org/10.1016/S1002-0721(07)60329-9




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es