A further study of the kinetics of recrystallization and grain growth of cold rolled TWIP steel

Authors

DOI:

https://doi.org/10.3989/revmetalm.131

Keywords:

Activation energy, Cold rolled, Grain growth, Grain growth exponent, Isothermal annealing treatments, Precipitation, Static recrystallization, Texture, TWIP steel

Abstract


Hot rolled, laboratory-cast, TWIP steel specimens with composition 22% Mn-0.6% C (in mass %) was cold rolled to reductions of 40%, 50%, 60% and 70% and afterwards isothermally annealed for various times in the interval of temperatures 450 ºC ≤ T ≤ 1100 ºC. The purpose was to study the precipitation behavior and its plausible effect in the static recrystallization and grain growth kinetics. Two types of precipitates were found in 600 °C ≤ T ≤ 700 °C for long times: (Fe, Mn)3C – Cementite and Vanadium Carbonitrides. Recrystallized grain size was very fine, D0 ≤ 2 ?m. Also, a weaken retained rolling texture in the recrystallisation process was found. Calculated value of activation energy for recrystallization, Qsoft = 281 ± 70 kJ·mol-1 was obtained which corresponds practically with the activation energy for bulk self-diffusion in austenite (270 kJ·mol-1) and for Mn diffusion in the austenite lattice (265 kJ·mol-1). Nevertheless, higher calculated activation energy for grain growth, QGG = 384 ± 60 kJ·mol-1 was found with a grain growth exponent of nGG ~ 4. Consequently, the most plausible explanation is that the quantity of precipitates is enough to have relevant pinning effect of migrating grain boundaries during grain growth due to the mean length between precipitates, Lprec, is smaller than some threshold value of grain size, Lprec < Dthreshold, being, D0 << Dthreshold.

Downloads

Download data is not yet available.

References

Allain, S., Chateau, J.-P., Bouaziz, O., Migot, S., Guelton, N. (2004). Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mat. Sci. Eng. A 387–389, 158–162. https://doi.org/10.1016/j.msea.2004.01.059

Avrami, M. (1939). Kinetics of phase change I – General theory. J. Chem. Phys. 7 (12), 1103–1112. https://doi.org/10.1063/1.1750380

Bouaziz, O., Allain S., Scott, C. (2008). Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scripta Mater. 58 (6), 484–487. https://doi.org/10.1016/j.scriptamat.2007.10.050

Bouaziz, O., Allain S., Scott, C.P., Cugy, P., Barbier, D. (2011). High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid St. M. Sci. 15 (4), 141–168. https://doi.org/10.1016/j.cossms.2011.04.002

Bracke, L., Verbeken, K., Kestens, L., Penning, J. (2009). Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Mater. 57 (5), 1512–1524. https://doi.org/10.1016/j.actamat.2008.11.036

Burke, J.E., Turnbull, D. (1952). Recrystallization and grain growth. Prog. Met. Phys. 3, 220–292. https://doi.org/10.1016/0502-8205(52)90009-9

Chen, L., Zhao, Y., Qin, X. (2013). Some Aspects of High Manganese Twinning-Induced Plasticity (TWIP) Steel, A Review. Acta Metall. Sin. 26 (1), 1–15. https://doi.org/10.1007/s40195-012-0501-x

Cornette, D., Cugy, P., Hildenbrand, A., Bouzekri, M., Lovato, G. (2005). Ultra high strength FeMn TWIP steels for automotive safety parts. Rev. Met. Paris 102 (12), 905–918. https://doi.org/10.1051/metal:2005151

De Cooman, B.C., Chin, K.-G., Kim, J.M. (2011). New Trends and Developments in Automotive System Engineering. High Mn TWIP Steels for Automotive Applications. Chapter 6, Editor Marcello Chiaberge, IntechOpen. PMCid:PMC3224103

De las Cuevas, F., Reis, M., Ferraiuolo, A., Pratolongo, G., Karjalainen, L.P., Alkorta, J., Gil Sevillano, J. (2010a). Hall-Petch relationship of a TWIP steel. Key Eng. Mater. 423, 147–152. https://doi.org/10.4028/www.scientific.net/KEM.423.147

De las Cuevas, F., Reis, M., Ferraiuolo, A., Pratolongo, G., Karjalainen, L.P., García Navas, V., Gil Sevillano, J. (2010b). Kinetics of recrystallization and grain growth of cold rolled TWIP steel. Adv. Mat. Res. 89–91, 153–158. https://doi.org/10.4028/www.scientific.net/AMR.89-91.153

De las Cuevas, F., Ferraiuolo, A., Karjalainen, L.P., Gil Sevillano, J. (2014). Propiedades mecánicas a tracción de un acero TWIP a altas velocidades de deformación: relación de Hall-Petch. Rev. Metal. 50 (4), e031. https://doi.org/10.3989/revmetalm.031

De las Cuevas, F., Gil Sevillano, J. (2017). Loss of ductility due to decarburation and Mn depletion of a coarse-grained TWIP steel. Rev. Metal. 53 (4), e109. https://doi.org/10.3989/revmetalm.109

Doherty, R.D., Hughes, D.A., Humphreys, F.J, Jonas, J.J., Juul Jensen, D., Kassner, M.E., King, W.E., McNelley, T.R., McQueen, H.J., Rollet, A.D. (1997). Current issues in recrystallization: a review. Mat. Sci. Eng. A 238 (2), 219–274. https://doi.org/10.1016/S0921-5093(97)00424-3

Dumay, A., Chateau J.-P., Allain, S., Migot, S., Bouaziz, O. (2008). Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel. Mat. Sci. Eng. A 483–484, 184–187. https://doi.org/10.1016/j.msea.2006.12.170

Frommeyer, G., Grässel, O. (1998). Light Constructional Steel and the Use Thereof. Patent PCT/EP98/04044. WO 99/01585Al.

Frommeyer, G., Drewes, E.J., Engl, B. (2000). Physical and mechanical properties of iron-aluminium- (Mn, Si) lightweight steels. Rev. Met. Paris 97 (10), 1245–1253. https://doi.org/10.1051/metal:2000110

Galán, J., Samek, L., Verleysen, P., Verbeken, K., Houbaert, Y. (2012). Advanced high strength steels for automotive industry. Rev. Metal. 48 (2), 118–131. https://doi.org/10.3989/revmetalm.1158

German, R.M. (1978). Grain growth in austenitic stainless steels. Metallography 11 (12), 235–239. https://doi.org/10.1016/0026-0800(78)90043-5

Ghasri-Khouzani, M., McDermid, J.R. (2015). Effect of carbon content on the mechanical properties and microstructural evolution of Fe-22Mn-C steels. Mat. Sci. Eng. A 621, 118–127. https://doi.org/10.1016/j.msea.2014.10.042

Grässel, O., Frommeyer, G, Derder, C., Hofmann, H. (1997). Phase transformation and mechanical properties of Fe-Mn-Si-Al TRIP-steels. J. Phys. IV France 7 (C5), 383–388. https://doi.org/10.1051/jp4:1997560

Grässel, O., Frommeyer, G. (1998). Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels. Mater. Sci. Tech. 14 (12), 1213–1217. https://doi.org/10.1179/mst.1998.14.12.1213

Grässel, O., Krüger, L., Frommeyer, G., Meyer, L.W. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application. Int. J. Plasticity 16 (10–11), 1391–1409. https://doi.org/10.1016/S0749-6419(00)00015-2

Gil Sevillano, J., de las Cuevas, F. (2012). Internal stresses and the mechanism of work hardening in twinning-induced plasticity steels. Scripta Mater. 66 (12), 978–981. https://doi.org/10.1016/j.scriptamat.2012.02.019

Hamada, A.S., Karjalainen, L.P., Ferrraiuolo, A., Gil Sevillano, J., de las Cuevas, F., Pratolongo, G., Reis, M. (2010). Fatigue behavior of four high-Mn twinning induces plasticity effect steels. Metall. Mater. Trans. A 41 (5), 1102–1108. https://doi.org/10.1007/s11661-010-0193-7

Humphreys, F.J., Hatherly, M. (2004). Recrystallization and related annealing phenomena. 2nd Edition, Elsevier Ltd, Oxford, England.

Hurley, P.J., Humphreys, F.J. (2003a). The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy. Acta Mater. 51 (4), 1087–1102. https://doi.org/10.1016/S1359-6454(02)00513-X

Hurley, P.J., Humphreys, F.J. (2003b). Modelling the recrystallization of single-phase aluminium. Acta Mater. 51 (13), 3779–3793. https://doi.org/10.1016/S1359-6454(03)00192-7

Johnson, W.A., Mehl, R.F. (1939). Reaction kinetics in processes of nucleation and growth. Transactions of the AIME 135, 416–458.

Kalashnilov, I.S., Ermakov, B.S., Aksel´rad, O., Pereira, L.K. (2001). Alloying of steels of the Fe-Mn-Al-C system with refractory elements. Met. Sci. Heat Treat. 43 (11–12), 493–496. https://doi.org/10.1023/A:1014805123438

Leslie, W.C., Rauch, G.C. (1978). Precipitation of carbides in low-carbon Fe-Al-C alloys. Metall. Trans. A 9 (3), 343–349. https://doi.org/10.1007/BF02646383

Luo, H., Sietsma, J., Van Der Zwaag, S. (2004). A metallurgical interpretation of the static recrystallization kinetics of an intercritically deformed C-Mn steel. Metall. Mater. Trans. A 35 (6), 1889–1898. https://doi.org/10.1007/s11661-004-0097-5

Marder A.R. (1989). ASM Handbook: Nondestructive evaluation and quality control. Vol. 17, ASTM International, USA.

Pierce, D.T., Jiménez, J.A, Bentley, J., Raabe, D., Oskay, C., Witting, J.E. (2014). The influence of manganese content on the stacking fault and austenite / e-martensite interfacial energies in Fe-Mn-(Al-Si) steels investigated by experiment and theory. Acta Mater. 68, 238–253. https://doi.org/10.1016/j.actamat.2014.01.001

Pierce, D.T., Jiménez, J.A, Bentley, J., Raabe, D., Oskay, C. Witting, J.E. (2015). The influence of stacking fault energy on the microstructural and strain hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Mater. 100, 178–190. https://doi.org/10.1016/j.actamat.2015.08.030

Scott C., Allain S., Faral, M., Guelton, N. (2006). The development of a new Fe-Mn-C austenitic steel for automotive applications. Rev. Met. Paris 103 (6), 293–302. https://doi.org/10.1051/metal:2006142

Schramm, R.E., Reed, R.P. (1975). Stacking-fault energies of 7 commercial austenitic stainless-steels. Metall. Trans. A-Phys. Metall. Trans. A 6 (7), 1345–1351. https://doi.org/10.1007/BF02641927

Sun, S., Pugh, M. (2000). Manganese partitioning in dual-phase steel during annealing. Mat. Sci. Eng. A-Struct. 276 (1–2), 167–174. https://doi.org/10.1016/S0921-5093(99)00261-0

Vercammen, S., Blanpain, B., De Cooman, B.C., Wollants, P. (2004). Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning. Acta Mater. 52 (7), 2005–2012. https://doi.org/10.1016/j.actamat.2003.12.040

Vidoz, A.E., Lazarevic, D.P., Cahn, R.W. (1963). Strain-ageing of ordering alloys, with special reference to Nickel-Iron system. Acta Metall. 11 (1), 17–33. https://doi.org/10.1016/0001-6160(63)90121-4

Published

2018-12-30

How to Cite

de las Cuevas, F., Aguilar, C., & Gil Sevillano, J. (2018). A further study of the kinetics of recrystallization and grain growth of cold rolled TWIP steel. Revista De Metalurgia, 54(4), e131. https://doi.org/10.3989/revmetalm.131

Issue

Section

Articles