Mapping initial stages of localized corrosion of AA6061-T6 in diluted substitute ocean water by LEIS and SKP

Authors

DOI:

https://doi.org/10.3989/revmetalm.134

Keywords:

AA6061-T6, Corrosion, LEIS, Ocean water, SKP, SEM-EDX

Abstract


Localized Electrochemical Impedance Spectroscopy (LEIS) and Scanning Kelvin Probe (SKP) maps were acquired to characterize the initial corrosion activity of 6061-T6 aluminum alloy in diluted substitute ocean water up to 24 h, simulating low polluted atmospheric environment in chlorides. Both measurements were performed in situ at open circuit potential. LEIS maps showed the distribution of the impedance magnitude |Z| on the alloy surface, suggesting a heterogeneity in development of corrosion-active sites (first pits). SKP maps evidenced the appearance of anodic (with more negative potential) and cathodic sites on the alloy surface, which confirmed the localized character of the corrosion. SEM-EDX analysis revealed the initiation of localized aluminum dissolution in the vicinity of iron-rich intermetallic particles of Al-Fe-Si and in areas with segregated carbon, all acting as cathodes and remaining on the surface with the advance of the process.

Downloads

Download data is not yet available.

References

Alodan, M., Smyrl, W. (1998). Detection of localized corrosion of aluminum alloys using fluorescence microscopy. J. Electrochem. Soc. 145 (5), 1571–1577. https://doi.org/10.1149/1.1838520

Annergren, I., Zou, F., Thierry, D. (1999). Application of localised electrochemical techniques to study kinetics of initiation and propagation during pit growth. Electrochim. Acta 44 (24), 4383–4393. https://doi.org/10.1016/S0013-4686(99)00154-1

ASTM D1141-98 (2008). Standard practice for the preparation of substitute ocean water. ASTM, West Conshohocken.

Braun, R. (2006). Investigation on microstructure and corrosion behaviour of 6XXX series aluminium alloys. Mater. Sci. Forum 519–521, 735–740. https://doi.org/10.4028/www.scientific.net/MSF.519-521.735

Burstein, G.T., Liu, C., Souto, R.M., Vines, S.P. (2004). Origins of pitting corrosion. Corros. Eng. Sci. Techn. 39 (1), 25–30. https://doi.org/10.1179/147842204225016859

Chen, G.S., Gao, M., Wei, R.P. (1996). Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3. Corrosion 52 (1), 8–15. https://doi.org/10.5006/1.3292099

Davis, J.R. (1999). Corrosion of aluminum and aluminum alloys. ASM International, Materials Park, Ohio, USA.

Davis, J.R. (2001). Aluminum and aluminum alloys. In Alloying: Understanding the basics. ASM International, Materials Park, Ohio, USA.

Eckermann, F., Suter, T., Uggowitzer, P.J., Afseth, A., Schmutz, P. (2008). The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochim. Acta 54 (2), 844–855. https://doi.org/10.1016/j.electacta.2008.05.078

Guillaumin, V., Mankowski, G. (2000). Localized corrosion of 6056 T6 aluminium alloy in chloride media. Corros. Sci. 42 (1), 105–125. https://doi.org/10.1016/S0010-938X(99)00053-0

Hansen, D.C., Grecsek, G.E., Roberts, R.O. (1999). A scanning kelvin probe analysis of aluminum and aluminum alloys. Corrosion´99, NACE International, San Antonio, Texas.

Huang, V.M.W., Vivier, V., Orazem, M.E., Pebere, N., Tribollet, B. (2007). The apparent constant-phase-element behavior of an ideally polarized blocking electrode. J. Electrochem. Soc. 154 (2), C81-C88. https://doi.org/10.1149/1.2398882

Huang, V.M.W., Wu, S-L., Orazem, M.E., Pébère, N., Tribollet, B., Vivier, V. (2011). Local electrochemical impedance spectroscopy: A review and some recent developments. Electrochim. Acta 56 (23), 8048–8057. https://doi.org/10.1016/j.electacta.2011.03.018

ISO 8407 (1991). Corrosion of metals and alloys - Removal of corrosion products from corrosion test specimens, International Organization for Standardization, Genève.

Juzeliunas, E., Leinartas, K., Fürbeth, W., Jüttner, K. (2003). Study of initial stages of Al–Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe. Corros. Sci. 45 (9), 1939–1950. https://doi.org/10.1016/S0010-938X(03)00026-X

Lillard, R.S., Moran, P.J., Isaacs, H.S. (1992). A novel method for generating quantitative local electrochemical impedance spectroscopy. J. Electrochem. Soc. 139 (4), 1007–1012. https://doi.org/10.1149/1.2069332

Moreto, J.A., Marino, C.E.B., Bose Filho, W.W., Rocha, L.A., Fernandes, J.C.S. (2014). SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication. Corros. Sci. 84, 30–41. https://doi.org/10.1016/j.corsci.2014.03.001

Orazem, M.E., Tribollet, B. (2017). Local electrochemical impedance spectroscopy. In: Electrochemical Impedance Spectroscopy. J. Wiley & Sons, Inc., New Jersey, USA. https://doi.org/10.1002/9781119363682

Rohwerder, M., Stratmann, M., Leblanc, P., Frankel, G.S. (2006). Application of scanning Kelvin probe in corrosion science. In: Analytical methods in corrosion science and engineering. Chapter 16, Edited by P. Marcus, F. Mansfeld, Taylor & Francis Group, USA, pp. 606–648.

Rynders, R.M., Paik, C.H., Ke, R., Alkire, R.C. (1994). Use of in situ atomic force microscopy to image corrosion at inclusions. J. Electrochem. Soc. 141 (6), 1439–1445. https://doi. org/10.1149/1.2054943. https://doi.org/10.1149/1.2054943

Staley, J.T. (1989). Treatise on Materials Science and Technology. Aluminium alloys-contemporary research and applications. Vol. 31, Edited by Vasudeavan, A.K., Doherty, R.D., Academic Press, Boston.

Stratmann, M., Streckel, H. (1990a). On the atmospheric corrosion of metals which are covered with thin electrolyte layers-I Verification of the experimental technique. Corros. Sci. 30 (6–7), 681–696. https://doi.org/10.1016/0010-938X(90)90032-Z

Stratmann, M., Streckel, H. (1990b). On the atmospheric corrosion of metals which are covered with thin electrolyte layers-II Experimental results. Corros. Sci. 30 (6–7), 697–714. https://doi.org/10.1016/0010-938X(90)90033-2

Szklarska-Smialowska, Z. (1999). Pitting Corrosion of Aluminum. Corros. Sci. 41 (9), 1743–1767. https://doi. org/10.1016/S0010-938X(99)00012-8. https://doi.org/10.1016/S0010-938X(99)00012-8

Vera, R., Schrebler, R., Layana, G., Orellana, F., Olguín, A. (1998). Corrosión por picaduras del aluminio y de la aleación Al-6201 en soluciones de NaCl. Rev. Metal. 34 (3), 268–273. https://doi.org/10.3989/revmetalm.1998.v34.i3.793

Yasakau, K.A., Zheludkevich, M.L., Ferreira, M.G.S. (2018). Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection. In: Intermetallic Matrix Composites, Properties and Applications. Woodhead Publishing, Aveiro, Portugal, pp. 425–462. https://doi.org/10.1016/B978-0-85709-346-2.00015-7

Zou, F., Thierry, D. (1997). Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings. Electrochim. Acta 42 (20–22), 3293–3301. https://doi.org/10.1016/S0013-4686(97)00180-1

Published

2018-12-30

How to Cite

Acosta, G., & Veleva, L. (2018). Mapping initial stages of localized corrosion of AA6061-T6 in diluted substitute ocean water by LEIS and SKP. Revista De Metalurgia, 54(4), e134. https://doi.org/10.3989/revmetalm.134

Issue

Section

Articles