Revista de Metalurgia, Vol 55, No 1 (2019)

Evaluación ultrasónica de las fases formadas de un acero inoxidable dúplex 2205 tratado térmicamente a 750 °C y su comportamiento frente a la corrosión


https://doi.org/10.3989/revmetalm.135

Paola Trocoli-Montesino
Universidad Simón Bolívar, Dpto. de Ciencias de los Materiales, Venezuela, República Bolivariana de
orcid http://orcid.org/0000-0002-1080-7153

Edda Rodríguez-Prato
Universidad Simón Bolívar, Dpto. de Ciencias de los Materiales, Venezuela, República Bolivariana de
orcid http://orcid.org/0000-0002-7853-9722

Adalberto Rosales-Mendoza
Universidad Simón Bolívar, Dpto. de Ciencias de los Materiales, Venezuela, República Bolivariana de
orcid http://orcid.org/0000-0003-0355-6525

Wilfrido González-Hermosilla
Universidad Simón Bolívar, Dpto. de Ciencias de los Materiales, Venezuela, República Bolivariana de
orcid http://orcid.org/0000-0002-2532-842X

Resumen


El presente estudio evalúa el comportamiento de las variables ultrasónicas en probetas de acero inoxidable dúplex 2205 (UNS31803/ EN1.4462), tratadas térmicamente a 750 °C durante distintos tiempos, con el objetivo de promover la precipitación de fases secundarias, chi (χ) y sigma (σ). Se estudió la evolución microestructural mediante microscopía óptica y electrónica de barrido, y utilizando la técnica ultrasónica pulso eco de contacto. Finalmente, se realizaron ensayos electroquímicos con el objetivo de evaluar la resistencia a la corrosión. Los resultados revelaron que a medida que aumenta el tiempo de tratamiento térmico se produce un incremento de las cantidades relativas de fases χ y σ a lo largo de las interfases ferrita/ferrita y ferrita/austenita, especialmente hacia el interior del grano ferrítico. La velocidad de onda longitudinal y el coeficiente de atenuación presentaron una tendencia que coincide con los cambios microestructurales generados por efecto del tratamiento térmico. La evaluación electroquímica reveló una alta resistencia a la corrosión uniforme. No obstante, se observó una correlación entre el aumento del tiempo de tratamiento térmico con la pérdida de la resistencia a la corrosión localizada.

Palabras clave


Acero inoxidable dúplex 2205; Corrosión; Evaluación ultrasónica; Fase Chi; Fase Sigma; Tratamiento térmico

Texto completo:


HTML PDF XML

Referencias


ASTM E3-01 (2007). Standard Guide for Preparation of Metallographic Specimens. ASTM International, West Conshohocken, USA.

ASTM G100-89 (1999). Standard Test Method for Conducting Cyclic Galvanostaircase Polarization. ASTM International, West Conshohocken. USA.

Badji, R., Bouabdallah, M., Bacroix, B., Kahloun, C., Belkessa, B., Maza, H. (2008). Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds. Mater. Charact. 59 (4), 447-453. https://doi.org/10.1016/j.matchar.2007.03.004

Chen, T.H., Yang, J.R. (2001). Effects of solution treatment and continuous cooling on ?-phase precipitation in a 2205 duplex stainless steel. Mat. Sci. Eng A-Struct. 311 (1-2), 28-41. https://doi.org/10.1016/S0921-5093(01)00911-X

Escriba, D., Materna-Morris, E., Plaut, R., Padilha, A. (2009). Chi-phase precipitation in a duplex stainless steel. Mater. Charact. 60 (11), 1214-1219. https://doi.org/10.1016/j.matchar.2009.04.013

Fargas, G., Anglada, M., Mateo, A. (2009). Effect of the annealing temperature on the mechanical properties, formability and corrosion resistance of hot-rolled duplex stainless Steel. J. Mater. Process. Tech. 209 (4), 1770-1782. https://doi.org/10.1016/j.jmatprotec.2008.04.026

Femeina, M., Pan, J., Leygraf, C., Luukkonen, P. (2001). In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunneling microscopy. Corros. Sci. 43 (10), 1939-1951. https://doi.org/10.1016/S0010-938X(00)00180-3

Gao, T., Wang, J., Sun, Q., Han, P. (2018). Corrosion behavior difference in initial period for hot-rolled and cold-rolled 2205 duplex stainless steels. Metals 8 (6), 407. https://doi.org/10.3390/met8060407

Ghosh, S.K., Mondal, S. (2008). High temperature ageing behaviour of a duplex stainless steel. Mater. Charact. 59 (12), 1776-1783. https://doi.org/10.1016/j.matchar.2008.04.008

Ginn, B., Gooch, T. (1998). Effect of intermetallic content on pitting resistance of ferritic/austenitic stainless steel. TWI report

-1997 CRP. Programme 9403-6, TWI Cambridge, England.

Gironès, A., Anglada, M., Mateo, A. (2007). Chloride content effect on the corrosión fatigue properties of superduplex stainless steels. J. Eng. Mater. Technol. 129 (4), 588-593. https://doi.org/10.1115/1.2772325

Gunn, R. (1997). Duplex stainless steels. Microstructure, properties and applications. Woodhead Publishing Ltd., England. https://doi.org/10.1533/9781845698775

Hakan, C., Orkun, B. (2005). Characterization of microstructural phases of steels by sound velocity measurement. Materials Charact. 55 (2), 160-166. https://doi.org/10.1016/j.matchar.2005.05.002

Jayakumar, T., Raj, B., Willems, H., Arnold, W. (1991). Influence of microstructure on ultrasonic velocity in Nimonic alloy PE16. In: Review of Progress in Quantitative Nondestructive Evaluation, Thompson D.O., Chimenti D.E. (Eds.), Springer, Boston, MA, pp. 1693-1699. https://doi.org/10.1007/978-1-4615-3742-7_72

Karlsson, L. (1999). Intermetallic phase precipitation in duplex stainless steels and weld metals: Metallurgy, influence on properties and welding aspects. Weld. Res. Counc. Bull. 43 (438), 1-23.

Kumar, A., Jayakumar, T., Raj, B. (2000). Ultrasonic spectral analysis for microstructural characterization of austenitic and ferritic steels. Philos. Mag. A 80 (11), 2469-2487. https://doi.org/10.1080/01418610008216486

Li, L., Sagüés, A. (2002). Chloride corrosion threshold of reinforcing steel in alkaline solutions - cyclic polarization behavior. Corrosion 58 (4), 305-316. https://doi.org/10.5006/1.3287678

Li, B., Zhang, W. (2017). Electrochemical and corrosion behavior of 2205 duplex stainless steel in simulated concrete pore solution. Int. J. Electrochem. Sci. 12, 8432-8446. https://doi.org/10.20964/2017.09.43

Macedo, E. de, Costa, V, Pereira, J., Gomes, A., Pinho, E., Tavares, J. (2009). Phase transformations evaluation on a UNS S331803 duplex stainless steel based on nondestructive testing. Mat. Sci. Eng. A-Struct. 516 (1-2), 126-130. https://doi.org/10.1016/j.msea.2009.03.004

Mangonon, P.L. (1999). The Principles of Materials Selection for Engineering Design. Prentice Hall. Upper Saddle River, USA.

Mateo, A., Llanes, L. (1997). Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel. J. Mater. Sci. 32 (17), 4533-4540. https://doi.org/10.1023/A:1018669217124

Mesquita, T.J., Chauveau, E., Mantel, M., Kinsman, N., Nogueira, R.P. (2013). Influence of Mo alloying on pitting corrosion of stainless steels used as concrete reinforcement. Rev. Esc. Minas, 66 (2), 173-178. https://doi.org/10.1590/S0370-44672013000200006

Michalska, J., Soza?ska, M. (2006). Qualitative and quantitative analysis of ? and ? phases in 2205 duplex stainless steel. Mater. Charact. 56 (4-5), 355-362. https://doi.org/10.1016/j.matchar.2005.11.003

Nayar, A. (2002). The Steel Handbook, McGraw Hill Education, England.

Paulraj, P., Garg, R. (2015). Effect of intermetallic phases on corrosion behavior and mechanical properties of duplex stainless steel and super-duplex stainless steel. Adv. Sci. Technol. 9 (27), 87-105 . https://doi.org/10.12913/22998624/59090

Pohl, M., Storz, O., Glogowski, T. (2007). Effect of intermetallic precipitations on the properties of duplex stainless steel. Mater. Charact. 58 (1), 65-71. https://doi.org/10.1016/j.matchar.2006.03.015

Rajkumar, K.V., Kumar A., Jayakumar, T., Raj, B., Ray, K.K. (2007). Characterization of aging behavior in M250 grade managing steel using ultrasonic measurements. Metall. Mater. Trans. A 38 (2), 236-243. https://doi.org/10.1007/s11661-006-9060-y

Rodríguez, E., Stella, J., Ruiz, A., Fargas, G., Mateo, A. (2011a). Characterization of microstructural changes in a duplex stainless steel using spectral analysis and conventional ultrasonic techniques. Mater. Test. 53 (9), 564-571. https://doi.org/10.3139/120.110264

Rodríguez, E., Stella, J., Kryzanowskyj, A., Amorer, L., Mateo, A. (2011b). Caracterización de la respuesta ultrasónica de un acero dúplex 2205 durante la disolución de la fase sigma. Rev. LatinAm. Metal. Mat. 32 (1), 49-60. http://rlmm.org/ojs/index.php/rlmm/article/ view/141.

Ruiz, A., Ortiz, N., Carreón, H., Rubio, C. (2009). Utilization of ultrasonic measurements for determining the variations in microstructure of thermally degraded 2205 duplex stainless steel. J. Nondestruct. Eval. 28, 131-139. https://doi.org/10.1007/s10921-009-0055-7

Sánchez, E.M. (2011). Pitting potential of high performance duplex stainless steels reinforcements. Master of Science Thesis, Florida Atlantic University, USA.




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es