The removal of toxic metals from liquid effluents by ion exchange resins. Part IX: Lead(II)/H+/Amberlite IR-120

Authors

DOI:

https://doi.org/10.3989/revmetalm.138

Keywords:

Amberlite IR-120, Efluentes líquidos, Eliminación, Nanotubos de carbono de pared múltiple, Plomo(II)

Abstract


Lead is recognized as a highly harmful metal for humans, thus its removal from any source containing it is a primary target. In average conditions, lead is present in aqueous solutions of pH lower than 5-6 as the cation Pb2+, thus in this work, the removal of such cation from aqueous solutions by the resin Amberlite IR-120 was investigated. Experimental variables than may influence to the removal of the metal were considered: stirring speed of the solution-resin system, temperature, resin dosage and resin particle size, and aqueous pH values. The metal uptake equilibrium responded well to the Freundlich isotherm, being endothermic and non-spontaneous, whereas lead uptake onto the resin responded to the pseudo-first order kinetic model; moreover, the uptake mechanism is non-dependent of the resin particle size and fits well to the aqueous diffusion model. The removal of lead(II) within the resin compared favourable to that obtained with multiwalled carbon nanotubes, and also with respect to the loading of several base metals from binary solutions loading experiments. Lead loaded onto the resin can be eluted, generally in almost quantitative form, by HCl solutions, under different experimental conditions.

Downloads

Download data is not yet available.

References

Alexander, J.A., Ahmad Zaini, M.A., Surajudeen, A., Aliyu, E.-N.U., Omeiza, A.U. (2018). Insight into kinetics and thermodynamics properties of multicomponent lead(II), cadmium(II) and manganese(II) adsorption onto Dijah-Monkin bentonite clay. Particul. Sci. Technol. 36, 569-577. https://doi.org/10.1080/02726351.2016.1276499

Alguacil, F.J., Coedo, A.G., Dorado, T., Padilla, I. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part I: chromium(VI)/sulphate/Dowex 1x8. Rev. Metal. 38 (4), 306-311. https://doi.org/10.3989/revmetalm.2002.v38.i4.412

Alguacil, F.J. (2002). The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II)/sulphate/Lewatit TP260. Rev. Metal. 38 (5), 348-352. https://doi.org/10.3989/revmetalm.2002.v38.i5.418

Alguacil, F.J. (2003). The removal of toxic metals from liquid effluents by ion exchange resins. Part III: copper(II)/sulphate/Amberlite 200. Rev. Metal. 39 (3), 205-209. https://doi.org/10.3989/revmetalm.2003.v39.i3.330

Alguacil, F.J. (2017a). The removal of toxic metals from liquid effluents by ion exchange resins. Part IV: chromium(III)/H+/Lewatit SP112. Rev. Metal. 53 (2), e093.

Alguacil, F.J. (2017b). The removal of toxic metals from liquid effluents by ion exchange resins. Part V: nickel(II)/H+/Dowex C400. Rev. Metal. 53 (4), e105.

Alguacil, F.J. (2018a). The removal of toxic metals from liquid effluents by ion exchange resins. Part VI: manganese(II)/H+/Lewatit K2621. Rev. Metal. 54 (2), e116.

Alguacil, F.J. (2018b). The removal of toxic metals from liquid effluents by ion exchange resins. Part VII: manganese(VII)/H+/Amberlite 958. Rev. Metal. 54 (3), e125.

Alguacil, F.J., Escudero, E. (2018). The removal of toxic metals from liquid effluents by ion exchange resins. Part VIII: arsenic(III)/OH-/Dowex 1x8. Rev. Metal. 54 (4), e132.

Alguacil, F.J., López, F.A., Rodriguez, O., Martinez-Ramirez, S., García-Díaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotox. Environ. Safe. 130, 81-86. https://doi.org/10.1016/j.ecoenv.2016.04.008 PMid:27085001

An, F.-Q., Xue, X.-Y., Li, M., Hu, T.-P., Gao, J.-F. (2017). Surface functionalization of D301 resin with urea: synthesis, characterization, and application for effective removal of toxic heavy metal ions. Desalin. Water Treat. 90, 241-251. https://doi.org/10.5004/dwt.2017.21397

Aydin, Ö., Özmetin, C., Korkmaz, M., Fil, B.A. (2017). A semiempirical kinetic model for removal of iron (Fe3+) from saturated boric acid solution by ion exchange using amberlite IR-120 resin. Particul. Sci. Technol. 35 (5), 505-511. https://doi.org/10.1080/02726351.2015.1076916

Babaei, A.A., Niknam, E., Ansari, A., Godini, K. (2017). Removal of trihalomethane precursors from water using activated carbon obtained from oak wood residue: kinetic and isotherm investigation of adsorption process. Desalin. Water Treat. 92, 116-127. https://doi.org/10.5004/dwt.2017.21429

Chanthapon, N., Sarkar, S., Kidkhunthod, P., Padungthon, S. (2018). Lead removal by a reusable gel cation exchange resin containing nano-scale zero valent iron. Chem. Eng. J. 331, 545-555. https://doi.org/10.1016/j.cej.2017.08.133

Chen, M., Shafer-Peltier, K., Randtke, S.J., Peltier, E. (2018). Competitive association of cations with poly(sodium 4-styrenesulfonate) (PSS) and heavy metal removal from water by PSS-assisted ultrafiltration. Chem. Eng. J. 344, 155-164. https://doi.org/10.1016/j.cej.2018.03.054

Chu, W., Lu, Z., Tan, R., Tang, S., Xu, W., Song, W., Zhao, J. (2018). Comparative study on Pb2+ removal using hydrothermal synthesized ?-SrHPO4, Sr3(PO4)2, and Sr5(PO4)3(OH) powders. Powder Technol. 329, 420-425. https://doi.org/10.1016/j.powtec.2018.01.073

Cunha, G.D.C., Santos B.T. dos, Alves, J.R., Alves Silva, I.A., Souza Cruz, D.R. de, Romao, L.P.C. (2018). Applications of magnetic hybrid adsorbent derived from waste biomass for the removal of metal ions and reduction of 4-nitrophenol. J. Environ. Manage. 213, 236-246. https://doi.org/10.1016/j.jenvman.2018.02.031 PMid:29500996

El-Bahy, S.M. (2018). New iminodiacetate chelating resin-functionalized Fe3O4 nanoparticles: synthesis, characterization, and application for the removal of some noxious metal ions from wastewater. J. Chem. Eng. Data 63 (6), 2299-2313. https://doi.org/10.1021/acs.jced.8b00241

Elsherbiny, A.S., El-Hefnawy, M.E., Gemeay, A.H. (2018). Adsorption efficiency of polyaspartate-montmorillonite composite towards the removal of Pb (II) and Cd (II) from aqueous solution. J. Polym. Environ. 26 (2), 411-422. https://doi.org/10.1007/s10924-017-0958-9

Emsley, J. (2005). The elements of murder. Oxford University Press. Oxford, Great Britain.

Ershad, M., Almeida, M.I.G.S., Spassov, T.G., Cattrall, R.W., Kolev, S.D. (2018). Polymer inclusion membranes (PIMs) containing purified dinonylnaphthalene sulfonic acid (DNNS): performance and selectivity. Sep. Purif. Technol. 195, 446-452. https://doi.org/10.1016/j.seppur.2017.12.037

Fang, L., Li, L., Qu, Z., Xu, H., Xu, J., Yan, N. (2018). A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J. Hazard. Mater. 342, 617-624. https://doi.org/10.1016/j.jhazmat.2017.08.072 PMid:28892798

Feng, C., Zhang, S., Li, L., Wang, G., Xu, X., Li, T., Zhong, Q. (2018). Feasibility of four wastes to remove heavy metals from contaminated soils. J. Environ. Manage. 212, 258-265. https://doi.org/10.1016/j.jenvman.2018.01.030 PMid:29448180

Flora, G., Gupta, D., Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 5 (2), 47-58. https://doi.org/10.2478/v10102-012-0009-2 PMid:23118587 PMCid:PMC3485653

Georgescu, A.-M., Nardou, F., Zichil, V., Nistor, I.D. (2018). Adsorption of lead(II) ions from aqueous solutions onto Cr-pillared clays. Appl. Clay Sci. 152, 44-50. https://doi.org/10.1016/j.clay.2017.10.031

Gupta, K.M., Zhang, K., Jiang, J. (2018). Efficient removal of Pb2+ from aqueous solution by an ionic covalent?organic framework: Molecular simulation study. Ind. Eng. Chem. Res. 57 (18), 6477-6482. https://doi.org/10.1021/acs.iecr.8b00625

Hayeeye, F., Yu, Q.J., Sattar, M., Chinpa, W., Sirichote, O. (2018). Adsorption of Pb2+ ions from aqueous solutions by gelatin/activated carbon composite bead form. Adsorption Sci. Technol. 36 (1-2), 355-371. https://doi.org/10.1177/0263617417693006

He, S., Li, Y., Weng, L., Wang, J., He, J., Liu, Y. Zhang, K, Wu, Q., Zhang, Y., Zhang, Z. (2018). Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters. Sci. Total Environ. 637-638, 69-78. https://doi.org/10.1016/j.scitotenv.2018.04.300 PMid:29742476

Huang, Y., Wang, Z. (2018). Preparation of composite aerogels based on sodium alginate, and its application in removal of Pb2+and Cu2+from water. Int. J. Biol. Macromol. 107 (A), 741-747. https://doi.org/10.1016/j.ijbiomac.2017.09.057 PMid:28928064

Igberase, E., Osifo, P. (2015). Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted crossed-link chitosan beads from aqueous solution. J. Ind. Eng. Chem. 26, 340-347. https://doi.org/10.1016/j.jiec.2014.12.007

Ivanenko V.I., Korneykov R.I., Kesarev K.A., Zharov N.V. (2018). Puryfying the process effluents from heavy metals and arsenic cations by deposition and ion exchange. Tsvetnye Metally 1, 33-38. https://doi.org/10.17580/tsm.2018.01.04

Kragovi?, M., Pa?ali?, S., Markovi?, M., Petrovi?, M., Nedeljkovi?, B., Mom?ilovi?, M., Stojmenovi?, M. (2018). Natural and modified zeolite-alginate composites. Application for removal of heavy metal cations from contaminated water solutions. Minerals 8 (1), 11. https://doi.org/10.3390/min8010011

Kinnarinen, T., Golmaei, M., Jernström, E., Häkkinen, A. (2018). Effective removal of hazardous trace metals from recovery boiler fly ashes. J. Hazard. Mater. 344, 770-777. https://doi.org/10.1016/j.jhazmat.2017.11.030 PMid:29161671

Kulkarni, V.V., Golder, A.K., Ghosh, P.K. (2018). Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation. J. Hazard. Mater. 341, 207-217. https://doi.org/10.1016/j.jhazmat.2017.07.043 PMid:28780435

Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., Brookes, P. (2018). Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd (II), Pb (II), and As (III) in aqueous solution and soil. J. Hazard. Mater. 344, 1-11. https://doi.org/10.1016/j.jhazmat.2017.09.036 PMid:29028493

Liu, S., Duan, Z., He, C., Xu, X., Li, T., Li, Y., Li, X., Wang, Y., Xu, L. (2018a). Rapid removal of Pb2+ from aqueous solution by phosphate-modified baker's yeast. RSC Adv. 8, 8026-8038. https://doi.org/10.1039/C7RA13545A

Liu, Y., Yan, Y., Seshadri, B., Qi, F., Xu, Y., Bolan, N., Zheng, F., Sun, X., Han, W., Wang, L. (2018b). Immobilization of lead and copper in aqueous solution and soil using hydroxyapatite derived from flue gas desulphurization gypsum. J. Geochem. Explor. 184, 239-246. https://doi.org/10.1016/j.gexplo.2016.08.006

López Díaz-Pavón, A., Cerpa, A., Alguacil, F.J. (2014). Processing of indium (III) solutions via ion exchange with Lewatit K-2621 resin. Rev. Metal. 50 (2), e010. https://doi.org/10.3989/revmetalm.010

Magrì, D., Caputo, G., Perotto, G., Scarpellini, A., Colusso, E., Drago, F., Martucci, A., Athanassiou, A., Fragouli, D, (2018). Titanate fibroin nanocomposites: a novel approach for the removal of heavy-metal ions from water. ACS Appl. Mater. Inter. 10 (1), 651-659. https://doi.org/10.1021/acsami.7b15440 PMid:29272094

Mai, T.T.T., Mai, X.T., Pham, T.V., Nguyen, A.T.V., Le, T.C., Phan, B.T. (2017). Effect of polyaniline maize tree-trunk composite on adsorption of lead (II) and cadmium (II) ions from solution. Desalin. Water Treat. 88, 179-188. https://doi.org/10.5004/dwt.2017.21430

Mesli, M., Belkhouche, N.-E. (2018). Emulsion ionic liquid membrane for recovery process of lead. Comparative study of experimental and response surface design. Chem. Eng. Res. Des. 129, 160-169. https://doi.org/10.1016/j.cherd.2017.11.011

Naushad, M., ALOthman, Z.A., Sharma, G., Inamuddin (2015). Kinetics, isotherm and thermodynamic investigations for the adsorption of Co (II) ion onto crystal violet modified amberlite IR-120 resin. Ionics 21 (5), 1453-1459. https://doi.org/10.1007/s11581-014-1292-z

Oke, I.A., Lukman, S., Ismail, A., Fehiniola, E.O., Amoko, J.S. (2017). Removal of lead ions from water and wastewaters electrochemically. In Water Purification. Grumezescu, A.M. (Ed.), Elsevier, The Netherlands, pp. 643-691. https://doi.org/10.1016/B978-0-12-804300-4.00019-8

Quyen, N.D.V., Tuyen, T.N., Khieu, D.Q., Hai, H.M., Tin, D.X., Lan, P.T.N., Kiyoshi, I. (2018). Lead ions removal from aqueous solution using modified carbon nanotubes. Bull. Mater. Sci. 41 (6), pages 11. https://doi.org/10.1007/s12034-017-1541-7

Rajamohan, N., Al Gharibi, A., Rajasimman, M. (2018). Kinetic modeling of lead removal in a resin column-parameters evaluation. Water Pract. Technol. 13 (2), 439-445. https://doi.org/10.2166/wpt.2018.056

Rehman, M., Rehman, W., Waseem, M., Haq, S., Shah, K.H., Kang, P. (2018). Adsorption of Pb2+ ions on novel ternary nanocomposite of tin, iron and titania. Mater. Res. Express 5 (2), 025512. https://doi.org/10.1088/2053-1591/aaabd8

Rwiza, M.J., Oh, S.-Y., Kim, K.-W., Kim, S.D. (2018). Comparative sorption isotherms and removal studies for Pb(II) by physical and thermochemical modification of low-cost agro-wastes from Tanzania. Chemosphere 195, 135-145. https://doi.org/10.1016/j.chemosphere.2017.12.043 PMid:29268172

Sahmoune, M.N. (2018). Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem. J. 141, 87-95 https://doi.org/10.1016/j.microc.2018.05.009

Song, M., Wei, Y., Cai, S., Yu, L., Zhong, Z., Jin, B. (2018). Study on adsorption properties and mechanism of Pb2 + with different carbon based adsorbents. Sci. Total Environ. 618, 1416-1422. https://doi.org/10.1016/j.scitotenv.2017.09.268 PMid:29089127

Tran, H.N., Viet, P.V., Chao, H.-P. (2018). Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds. Ecotox. Environ. Safe. 147, 55-63. https://doi.org/10.1016/j.ecoenv.2017.08.027. https://doi.org/10.1016/j.ecoenv.2017.08.027

USEPA (2018). National drinking water regulations. https://www.epa.gov. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Checked July 2018.

Wang, S., Li, P., Zhang, X., Zheng, S., Zhang, Y. (2017). Selective adsorption of lithium from high Mg-containing brines using HxTiO3 ion sieve. Hydrometallurgy 174, 21-28. https://doi.org/10.1016/j.hydromet.2017.09.009

Wang, G., Zhang, S., Yao, P., Chen, Y., Xu, X., Li, T., Gong, G. (2018a). Removal of Pb(II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent. Arab. J. Chem. 11 (1), 99-110. https://doi.org/10.1016/j.arabjc.2015.06.011

Wang, S., Guo, W., Gao, F., Wang, Y., Gao, Y. (2018b). Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars. RSC Adv. 8, 13205-13217. https://doi.org/10.1039/C7RA13540H

Yang, X., Igalavithana, A.D., Oh, S.-E., Nam, H., Zhang, M., Wang, C.-H., Kwon, E.E., Tsang, D.C.W., Ok, Y.S. (2018). Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil. Sci. Total Environ. 640-641, 704-713. https://doi.org/10.1016/j.scitotenv.2018.05.298 PMid:29870947

Zhou, H., Jiang, Z., Wei, S. (2018). A new hydrotalcite-like absorbent FeMnMg-LDH and its adsorption capacity for Pb2+ ions in water. Appl. Clay Sci. 153, 29-37. https://doi.org/10.1016/j.clay.2017.11.033

Zhu, Y., Jiang, Y., Zhu, Z., Deng, H., Ding, H., Li, Y., Zhang, L., Lin, J (2018). Preparation of a porous hydroxyapatite-carbon composite with the bio-template of sugarcane top stems and its use for the Pb(II) removal. J. Clean. Prod. 187, 650-661. https://doi.org/10.1016/j.jclepro.2018.03.275

Published

2019-03-30

How to Cite

Alguacil, F. J. (2019). The removal of toxic metals from liquid effluents by ion exchange resins. Part IX: Lead(II)/H+/Amberlite IR-120. Revista De Metalurgia, 55(1), e138. https://doi.org/10.3989/revmetalm.138

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>