Revista de Metalurgia, Vol 55, No 1 (2019)

Efecto del sistema de apantallamiento de la soldadura y el tiempo de almacenaje de los electrodos en el contenido de hidrógeno difundido en el metal depositado


https://doi.org/10.3989/revmetalm.140

Jacek Tomków
Gdańsk University of Technology (GUT), Polonia
orcid http://orcid.org/0000-0003-1096-7779

Dariusz Fydrych
Gdańsk University of Technology (GUT), Polonia
orcid http://orcid.org/0000-0002-2557-8568

Grzegorz Rogalski
Gdańsk University of Technology (GUT), Polonia
orcid http://orcid.org/0000-0003-3033-8048

Jerzy Łabanowski
Gdańsk University of Technology (GUT), Polonia
orcid http://orcid.org/0000-0003-3094-4101

Resumen


El método de desplazamiento de la glicerina se utilizó para determinar el contenido de hidrógeno difundido en el metal depositado. Las muestras se soldaron en aire y en agua con electrodos recubiertos de rutilo. En la primera parte, las se soldaron inmediatamente después de abrir el paquete con los electrodos. Posteriormente, los electrodos se almacenaron en paquetes abiertos en el ambiente de laboratorio durante 3 años. Pasado este tiempo, se realizó la segunda parte de las muestras. Los resultados de las mediciones de la cantidad de hidrógeno difundido en el metal depositado varió de 32,61 a 39,95 ml/100 g para muestras soldadas al aire y de 51,50 a 61,34 ml/100 g para muestras soldadas en agua. Los análisis estadísticos se realizaron utilizando el software Statistica, módulo ANOVA (análisis de varianza de una vía) con un supuesto nivel de validez α=0,05. La normalidad fue verificada por el ensayo Shapiro-Wilk. La homogeneidad de la varianza se verificó mediante el ensayo Levene. En la etapa siguiente, se realizaron análisis post-hoc. El objetivo fue determinar si los promedios son significativamente diferentes. Se utilizaron los ensayos Scheffe, Tukey, NIR Fisher, Newman-Keuls y Duncan. Los posibles cambios en el contenido de hidrógeno difundido en el metal depositado, resultante del tiempo de almacenamiento de los electrodos, se determinaron mediante el ensayo “t” de Student. Los resultados del análisis estadístico muestran que el tiempo de almacenamiento de los electrodos no tiene una influencia significativa en el contenido de hidrógeno difundido en el metal depositado, independientemente del sistema de apantallamiento utilizado en la soldadura.

Palabras clave


Electrodos recubiertos; Hidrógeno difundido; Método de la glicerina; Soldabilidad; Soldadura en húmedo; Soldadura sumergida en agua

Texto completo:


HTML PDF XML

Referencias


Aloraier, A., Ibrahim, R.N., Ghojel, J. (2004). Eliminating post-weld heat treatment in repair welding by temper bead technique: role bead sequence in metallurgical changes. J. Mater. Process Tech. 153-154, 292-400. https://doi.org/10.1016/j.jmatprotec.2004.04.383

BN-64/4130-01. (1971). Oznaczanie ca?kowitej zawarto?ci wodoru w stopiwie stalowych elektrod z otulina˛ kwa?n?, rutylowa lub zasadowq. Norma Branzowa.

Chen, H., Guo, N., Shi, X., Du, Y., Feng, J., Wang, G. (2018). Effect of water flow on the arc stability and metal transfer in underwater flux-cored wet welding. J. Manuf. Process 31, 103-115. https://doi.org/10.1016/j.jmapro.2017.11.010

Fydrych, D., Labanowski, J., Tomków, J., Rogalski, G. (2015). Cold cracking of underwater wet welded S355G10+N high strength steel. Adv. Mater. Sci. 15(3), 48-56. https://doi.org/10.1515/adms-2015-0015

Fydrych, D., Labanowski, J. (2015). An experimental study of high-hydrogen welding processes. Rev. Metal. 51 (4), e055. https://doi.org/10.3989/revmetalm.055

Guo, N., Liu, D., Guo, W., Li, X., Feng, J. (2015). Effect of Ni on microstructure and mechanical properties of underwater wet welding joint. Mater. Design 77, 25-31. https://doi.org/10.1016/j.matdes.2015.04.007

Guo, N., Du, Y., Maksimov, S., Feng, J., Yin, Z., Krazhanovskyi, D., Fu, D. (2017). Stydy of metal transfer control in underwater wet FCAW using pulsed wire feed method. Weld. World 62 (1), 87-94. https://doi.org/10.1007/s40194-017-0497-y

Han, L., Wu, X., Chen, G., Wang, Z., Fan, W. (2019). Local dry underwater welding of 304 stainless steel based on a microdrain cover. J. Mater. Process Tech. 268, 47-53. https://doi.org/10.1016/j.jmatprotec.2018.12.029

Harwig, D.D., Longenecker, D.P., Cruz, J.H. (1999). Effects of welding parameters and electrode atmospheric exposure on the diffusible hydrogen content of gas shielded flux cored arc welds. Weld. J. 78 (9), 314s-321s. https://app.aws.org/wj/supplement/sept99/HARWIG.pdf.

Hu, Y., Shi, Y.-H., Shen, X.-Q., Wang, Z.-M. (2017). Microstructure, pitting corrosion resistance and impact toughness of duplex stainless steel underwater dry hyperbaric flux-cored arc welds. Materials 10 (12), 1443. https://doi.org/10.3390/ma10121443

ISO 3690. (2012). Welding and allied processes. Determination of hydrogen content in arc weld metal. International Standard.

Kiefer, J.H. (1996). Effects of moisture contamination and welding parameters on diffusible hydrogen. Weld. J. 75 (5), 155-161.

López, F.A., Sierra, M.J., Rodríguez, O., Millán, R., Alguacil, F.J. (2014). Non-isothermal kinetics of the thermal desorption of mercury from a contaminated soil. Rev. Metal. 50 (1), e001. https://doi.org/10.3989/revmetalm.001

López, F.A., Alguacil, F.J., Rodríguez, O., Sierra, M.J., Millán, R. (2015). Mercury leaching from hazardous industrial wastes stabilized by sulfur polymer encapsulation. Waste Manage. 35, 301-306. https://doi.org/10.1016/j.wasman.2014.10.009 PMid:25458763

Padhy, G.K., Ramasubbu, V., Parvathavarthini, N., Wu, C.S., Albert, S.K. (2015a). Influence of temperature and alloying on the apparent diffusivity of hydrogen in high strength steel. Int. J. Hydrogen Energ. 40 (20), 6714-6725. https://doi.org/10.1016/j.ijhydene.2015.03.153

Padhy, G.K., Ramasubbu, V., Albert, S.K. (2015b). Rapid determination of diffusible hydrogen in steel welds using a modified gas chromatography facility. J. Test. Eval. 43 (1), 69-79. https://doi.org/10.1520/JTE20130077

Pandey, C., Mahapatra, M.M., Kumar, P., Saini, N. (2017a). Diffusible hydrogen level in deposited metal and their effect on tensile properties and flexural strength of P91 steel. J. Eng. Mater. Technol. 139 (3), 031004. https://doi.org/10.1115/1.4035764

Pandey, C., Mahapatra, M.M., Kumar, P., Saini, N., Srivastava, A. (2017b). Microstructure and mechanical property relationship for different heat treatment and hydrogen level in multi-pass welded P91 steel joint. J. Manuf. Process 28, 220-234. https://doi.org/10.1016/j.jmapro.2017.06.009

Pascual-Guillamón, M., Cárcel-Carrasco, J., Pérez-Puig, M., Salas-Vicente, F. (2018). Influence of an ERNiCrMo-3 root pass on the properties of cast iron weld joints. Rev. Metal. 54 (3), e122. https://doi.org/10.3989/revmetalm.122

Sajek A. (2019). Application of FEM simulation method in area of the dynamics of cooling AHSS steel with a complex hybrid welding process. Weld. World. 718, in press. https://doi.org/10.1007/s40194-019-00718-z

Schaupp, T., Rhode, M., Kannengiesser, T. (2017). Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process. Weld. World 62 (1), 9-18. https://doi.org/10.1007/s40194-017-0535-9

Schaupp, T., Rhode, M., Yahyaoui H., Kannengiesser, T. (2018). Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove. Weld. World. 1-10. https://doi.org/10.1007/s40194-018-00682-0

?wierczy?ska, A., ?abanowski, J., Michalska, J., Fydrych, D. (2017a). Corrosion behavior of hydrogen charged super duplex stainless steel welded joints. Mater. Corros. 68 (10), 1037-1045. https://doi.org/10.1002/maco.201709418

?wierczy?ska, A., Fydrych, D., Rogalski, G. (2017b). Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. Int. J. Hydrogen Energ. 42 (38), 24532-24540. https://doi.org/10.1016/j.ijhydene.2017.07.225

Tomków, J., Fydrych, D., Rogalski, G., ?abanowski, J. (2018a). Temper bead welding os S460N steel in wet welding conditions. Adv. Mater. Sci. 18 (3), 5-14. https://doi.org/10.1515/adms-2017-0036

Tomków, J., ?abanowski, J., Fydrych, D., Rogalski, G. (2018b). Cold cracking of S460N steel in water environment. Pol. Marit. Res. 25 (3), 131-136. https://doi.org/10.2478/pomr-2018-0104

Tomków, J., Rogalski, G., Fydrych, D., ?abanowski, J. (2018c). Improvement of S355G10+N steel weldability in water environment by Temper Bead Welding. J. Mater. Process Tech. 262, 372-381. https://doi.org/10.1016/j.jmatprotec.2018.06.034

Wang, J., Sun, Q., Zhang, S., Wang, C., Wu, L., Feng, J. (2018). Characterization of the underwater welding arc bubble through a visual sensing method. J. Mater. Process Tech. 251, 95-108. https://doi.org/10.1016/j.jmatprotec.2017.08.019

Wang, J., Sun, Q., Ma, J., Teng, J., Jin, P., Feng, J. (2019a). Investigation of acoustic radiator affecting bubble-acoustic interaction in ultrasonic wave-assisted UWW at shallow water. J. Manuf. Process 37, 563-577. https://doi.org/10.1016/j.jmapro.2018.12.020

Wang, J., Sun, Q., Pan, Z., Yang, J., Feng, J. (2019b). Effects of welding speed on bubble dynamics and process stability in mechanical constraint-assisted underwater wet welding of steel sheets. J. Mater. Process Tech. 264, 389-401. https://doi.org/10.1016/j.jmatprotec.2018.09.022

Yadav, U., Pandey, C., Saini, N., Thakre, J.G., Mahapatra, M.M. (2017). Study on Hydrogen-Assisted Cracking in High-Strength Steels by Using the Granjon Implant Test. Metall. Microstr. Anal. 6 (3), 247-257. https://doi.org/10.1007/s13632-017-0351-z




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es