Revista de Metalurgia, Vol 55, No 2 (2019)

Estudio de la descomposición de fases durante el sinterizado por plasma de compósitos Al-5%Ni3Al


https://doi.org/10.3989/revmetalm.145

Norma V. De León-Murguía
Instituto Politécnico Nacional, ESIQIE-DIMM, México
orcid http://orcid.org/0000-0003-2595-0582

Víctor M. López-Hirata
Instituto Politécnico Nacional, ESIQIE-DIMM, México
orcid http://orcid.org/0000-0002-7781-3419

Carlos Ferreira-Palma
Instituto Politécnico Nacional, ESIQIE-DIMM, México
orcid http://orcid.org/0000-0002-4433-1552

Diego I. Rivas-López
Instituto Politécnico Nacional, ESIQIE-DIMM, México
orcid http://orcid.org/0000-0003-4591-719X

Felipe Hernández-Santiago
Instituto Politécnico Nacional, ESIME-AZC, México
orcid http://orcid.org/0000-0002-2965-4257

Héctor J. Dorantes-Rosales
Instituto Politécnico Nacional, ESIQIE-DIMM, México
orcid http://orcid.org/0000-0001-6973-1766

Resumen


La síntesis de compósitos base Al reforzados con partículas intermetálicas nanocristalinas de Ni3Al se llevó a cabo mediante la técnica de Spark plasma Sintering (SPS). La mezcla de polvos Al-5%Ni3Al fue sinterizada por SPS a dos diferentes condiciones: (i) 450 °C, 47 MPa y 180 s (4M47) y (ii) 520 °C, 16 MPa y 600 s (5M16). Las partículas de Ni3Al fueron obtenidas mediante el proceso de aleado mecánico después de 1260 ks de molienda. Los compósitos muestran una parcial descomposición en la intercara Ni3Al-Al, formando las fases Al3Ni y Ni2Al3. El análisis por MET confirman las características nanométricas del Ni3Al en los compositos Al-5%Ni3Al. Los compósitos sinterizados 4M47 y 5M16 presentaron 95% y 87% de la densidad teórica y valores de microdureza Vickers de 62,3±7 y 55,3±5, respectivamente. Los ensayos de nanoindentación muestran que las propiedades mecánicas de los intermetálicos Al3Ni, Al3Ni2 y Ni3Al, son mayores en condiciones de sinterizado a alta presión.

Palabras clave


Aleado mecánico; Compósitos; Difusión; Interfase; Nanoindentación; Sinterizado por chispa de plasma

Texto completo:


HTML PDF XML

Referencias


Abbasi, M., Azadbeh, M., Sajjadi, S. (2010). Evolution of manufacturing parameters in Al/Ni3Al composite powder formation using blending and mechanical milling processes. J. Mater. Sci. 45 (16), 4524-4531. https://doi.org/10.1007/s10853-010-4548-7

Antolak-Dudka, A., Krasnowski, M., Kulik, M. (2013). Nanocrystalline Ni3Al produced by hot-pressing consolidation of mechanically alloyed powders. Intermetallics 42, 41-44. https://doi.org/10.1016/j.intermet.2013.05.014

Campo, M., Rams, J., Ureña, A. (2005). Determinación mediante nanoindentación de las propiedades mecánicas de la interfaz en materiales compuestos de aluminio reforzados con partículas de SiC recubiertas de sílice. Bol. Soc. Esp. Ceram. V. 44 (5), 270-277. https://doi.org/10.3989/cyv.2005.v44.i5.347

Cao, G., Geng, L., Zheng, Z., Naka, M. (2007). The oxidation of nanocrystalline Ni3Al fabricated by mechanical alloying and spark plasma sintering. Intermetallics 15 (12), 1672-1677. https://doi.org/10.1016/j.intermet.2007.07.003

Chen, C.-L., Richter, A., Thomson, R. (2009). Mechanical properties of intermetallic phases in multi-component Al-Si alloys using nanoindentation. Intermetallics 17 (8), 634-641. https://doi.org/10.1016/j.intermet.2009.02.003

Díaz, C., González-Carrasco, J.L., Caruana, G., Lieblich, M. (1996). Ni3Al Intermetallic particles as wear-resistant reinforcement for Al-Base composites processed by powder metallurgy. Metall. Mater. Trans. A 27 (10), 3259-3266. https://doi.org/10.1007/BF02663876

Enayati, M.H., Sadeghian, Z., Salehi, M., Saidi, A. (2004). The effect of milling parameters on the synthesis of Ni3Al intermetallic compound by mechanical alloying. Mat. Sci. Eng. A 375-377, 809-811. https://doi.org/10.1016/j.msea.2003.10.060

Eskin, Dm.G., Toropova, L.S. (1994). Tensile and elastic properties of deformed heterogeneous aluminum alloys at room and elevated temperatures. Mat. Sci. Eng. A 183 (1-2), L1-L4. https://doi.org/10.1016/0921-5093(94)90913-X

Fang, Q., Kang, Z., Gan, Y., Long, Y. (2015). Microstructures and mechanical properties of spark plasma sintered Cu-Cr composites prepared by mechanical milling and alloying. Mater. Design 88, 8-15. https://doi.org/10.1016/j.matdes.2015.08.127

Gan, B., Murakami, H., Maa, R., Meza, L., Greer, J., Ohmura, T., Tin, S. (2012). Nanoindentation and Nano-Compresion Testing of Ni3Al Precipitates. Superalloys 2012, 83-91. https://doi.org/10.7449/2012/Superalloys_2012_83_91

Hernández, P., Dorantes Rosales, H., Hernández, F., Esquivel, R., Rivas, D., López, V. (2014). Synthesis and microstructural characterization of Al-Ni3Al composites fabricated by press-sintering and shock-compaction. Adv. Powder Technol. 25 (1), 255-260. https://doi.org/10.1016/j.apt.2013.04.011

Hungría, T., Galy, J., Castro, A. (2009). Spark Plasma Sintering as a Useful Technique to the Nanostructuration of Piezo-Ferroelectric Materials. Adv. Eng. Mater. 11 (8), 615-631. https://doi.org/10.1002/adem.200900052

ICDD (2003). PDF-2/Inorganics 2003 (Database). Edited by Dr. Soorya Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, USA.

Li, X., Zhang, M., Zheng, D., Cao, T., Chen, J., Qu, S. (2015). The oxidation behavior of the WC-10 wt% Ni3Al composites fabricated by spark plasma sintering. J. Alloy Compd. 629, 148-154. https://doi.org/10.1016/j.jallcom.2015.01.010

Lieblich, M., González-Carrasco, J., Caruana, G. (1997). Thermal stability of an Al/Ni3Al composite processed by powder metallurgy. Intermetallics 5 (7), 515-524. https://doi.org/10.1016/S0966-9795(97)00027-7

Liming, K., Huang, C., Xing, L., Huang, K. (2010). Al-Ni intermetallic composites produced in situ by friction stir processing. J. Alloy Compd. 503 (2), 494-499. https://doi.org/10.1016/j.jallcom.2010.05.040

Meza, J.M., Franco, E.E., Farias, M.C.M., Buiochi, F., Souza, R.M., Cruz, J. (2008). Medición del módulo de elasticidad en materiales de ingeniería utilizando la técnica de nanoindentación instrumentada y de ultrasonido. Rev. Metal. 44 (1), 52-65. https://doi.org/10.3989/revmetalm.2008.v44.i1.95

Miranda, G., Madeira, S., Silva, F.S., Carvalho, O. (2017). A nanoindentation study on Al3Ni interface of Ni reinforced aluminum-silicon composite. Mech. Adv. Mater. Struc. 24 (10), 871-874. https://doi.org/10.1080/15376494.2016.1196790

Munir, Z.A., Anselmi-Tamburini, U., Ohyanagi, M. (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41 (3), 763-777. https://doi.org/10.1007/s10853-006-6555-2

Muñoz-Morris, M., Rexach, J., Lieblich, M. (2005). Comparative study of Al-TiAl composites with different intermetallic volume fractions and particle sizes. Intermetallics 13 (2), 141-149. https://doi.org/10.1016/j.intermet.2004.07.033

Mussert, K., Vellinga, W., Bakker , A., Van Der Zwagg, S. (2002). A nano-indentation study on the mechanical behaviour of the matrix material in an A AA60691-Al2O3 MMC. J. Mater. Sci. 37 (4), 789-794. https://doi.org/10.1023/A:1013896032331

O'Donnell, G., Looney, L. (2001). Production of aluminium matrix composite using conventional PM technology. Mat. Sci. Eng. A 303 (1-2), 292-301. https://doi.org/10.1016/S0921-5093(00)01942-0

Oliver, W., Pharr, G. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19 (1), 3-20. https://doi.org/10.1557/jmr.2004.19.1.3

Saheb, N., Iqbal, Z., Khalil, A., Saeed Hakeem, A., Al Aqeeli, N., Laoui, T., Kirchner, R. (2012). Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review. J. Nanomater. 2012, ID 983470, 13 pages. https://doi.org/10.1155/2012/983470

Saheb, N., Khan, M.S., Hakeem, A.S. (2015). Effect of Processing on Mechanically Alloyed and Spark Plasma Sintered Al-Al2O3 Nanocomposites. J. Nanomater. 2015, Article ID 609824, 13 pages. https://doi.org/10.1155/2015/609824

Sajjadi, S., Abbasi, M., Azadbeh, M. (2011). Evaluation of the Characteristics of Interfacial Phases Produced in Al/Ni3Al Composite during Manufacturing. MSA 2 (9), 1340-1348. https://doi.org/10.4236/msa.2011.29182

Sameezadeh, M., Emamy, M., Farhngi, H. (2016). Effect of MoSi2 distribution on room and high temperature mechanical properties of aluminum matrix composites. J. Mater. Res. 31 (12), 1741-1747. https://doi.org/10.1557/jmr.2016.190

Seymour, R., Hemeryck, A., Nomura, K., Wang, W., Kalia, R.K., Nakano, A., Vashishta, P. (2014). Nanoindentation of NiAl and Ni3Al crystals on (100), (110), and (111) surfaces: A molecular dynamics study. Appl. Phys. Lett. 104 (14), 141904. https://doi.org/10.1063/1.4867168

Suryanarayana, C., Norton, M. (1998). Determination of Crystallite Size and Lattice Strain. In X-ray Diffraction: A Practical Approach, Springer USA, pp. 207-221. https://doi.org/10.1007/978-1-4899-0148-4_9

Torralba, J.M., Velasco, F., Costa, C.E., Vergara, I., Cáceres, D. (2002). Mechanical behavior of the interphase between matrix and reinforcement of Al 2014 matrix composites reinforced with (Ni3Al)p. Compos Part A Appl. Sci. Manuf. 33 (3), 427-434. https://doi.org/10.1016/S1359-835X(01)00104-X

Torralba, J.M., Campos, M. (2014). Toward high performance in Powder Metallurgy. Rev. Metal. 50 (2), e017. https://doi.org/10.3989/revmetalm.017

Torres, B., Lieblich, M., García-Escorial, A. (2006). Effect of heat treatments at 520 °C on aluminium alloy matrix composite reinforced with Ni3Al powder particles. Scripta Mater. 54 (8), 1485-1489. https://doi.org/10.1016/j.scriptamat.2005.12.052

Ureña, A., Rams, J., Campo, M., Sánchez, M. (2005). Aplicación de la nanoindentación para la determinación de las propiedades mecánicas interfaciales compuestos de matriz de aluminio. Rev. Metal. 41 (Vol. Extr.), 395-400. https://doi.org/10.3989/revmetalm.2005.v41.iExtra.1063

Wang, Y., Rainforth, W.M., Jones, H., Lieblich, M. (2001). Dry wear behavior and its relation to microstructure of novel 6092 aluminium alloy-Ni3Al powder metallurgy composite. Wear 251 (1-2), 1421-1432. https://doi.org/10.1016/S0043-1648(01)00783-9

Xue, Y., Shen, R., Ni, S., Song, M., Xiao, D. (2015). Fabrication, microstructure and mechanical properties of Al-Fe intermetallic particle reinforced Al-based composites. J. Alloys Compd. 618, 537-544. https://doi.org/10.1016/j.jallcom.2014.09.009

Yu, Y., Zhou, J., Chen, J., Zhou, H., Guo, C., Guo, B. (2010). Synthesis of nanocrystalline Ni3Al by mechanical alloying and its microstructural characterization. J. Alloys Compd. 498 (1), 107-112. https://doi.org/10.1016/j.jallcom.2010.03.123

Zhang, D.L. (2004). Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 49 (3-4), 537-560. https://doi.org/10.1016/S0079-6425(03)00034-3




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es