Finite element modelling to predict reinforced concrete corrosion-induced cracking

Authors

DOI:

https://doi.org/10.3989/revmetalm.150

Keywords:

Concrete cracking, Concrete cover depth, Corrosion penetration depth, Finite element method, Localized corrosion, Modelling, Steel reinforcements

Abstract


A finite element (FE) method was proposed to calculate the corrosion penetration depth (rcrit) on steel reinforcement necessary for the first visible crack to appear on the concrete cover. The FE analysis was carried out using the commercial software from ANSYS. The obtained FE method is a function of free concrete cover depth (C), reinforcement diameter (D), length of the anodic zone (L), and concrete type. The results show a strong influence of localized corrosion (small-size anode versus large-size cathode) on the prediction of the rcrit value. This influence can only be analysed three-dimensionally. The proposed FE method is validated with experimental results from literature. This approach is a novelty in considering the longitudinal direction in the analysis to account for the extension of the anodic cell. Corrosion type strongly depends on the C/L ratio, this leads to uniform corrosion for values between 0.02 < C/L1 < 0.1 and localized corrosion for values between 0.5 < C/L < 4.0.

Downloads

Download data is not yet available.

References

ACI 318M?08 (2008). Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hill, Michigan.

Ahmad, A. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction-A review. Cement. Concrete Comp. 25 (4?5), 459?471. https://doi.org/10.1016/S0958-9465(02)00086-0

Andrade, C., Alonso, C., Molina, F.J. (1993). Cover cracking as a function of bar corrosion; Part I-Experimental test. Mater. Struct. 26 (8), 453?464. https://doi.org/10.1007/BF02472805

Balafas, I., Burgoyne, C.J. (2010). Environmental effects on cover cracking due to corrosion. Cement. Concrete Res. 40 (9), 1429?1440. https://doi.org/10.1016/j.cemconres.2010.05.003

Balafas, I., Burgoyne, C.J. (2011). Modelling the structural effects of rust in concrete cover. J. Eng. Mech. 137 (3), 175?185. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000215

Ba?ant, Z.P. (1979). Physical model for steel corrosion in concrete sea structures application. J. Struct. Div.-ASCE 105 (6), 1155-1166.

Bhargava, K., Ghosh, A.K., Mori, Y., Ramanujam, S. (2005). Modelling of time to corrosion-induced cover cracking in reinforced concrete structures. Cement. Concrete Res. 35 (1), 2203?2218. https://doi.org/10.1016/j.cemconres.2005.06.007

Busba, E., Sagües, A.A. (2013). Critical localized corrosion penetration of steel reinforcement for concrete cover cracking. NACE, Corrosion 2013 Conference, Paper No. 2747. http://www.eng.usf.edu/~sagues/Documents/Nace%2013%202747%20Critical%20Local%20Corr%20Penetr%20Crack.pdf.

Castorena, J.H. (2007). Modelación con Elemento Finito del Daño por Corrosión en Estructuras de Hormigón Reforzado, PhD Thesis, Centro de Investigación en Materiales Avanzados (CIMAV), Universidad Autónoma de Nuevo León, Nuevo León, México.

Castorena, J.H., Almeraya-Calderón, F., Velásquez, J.L., Gaona-Tiburcio, C., Cárdenas, A.I.; Barrios-Durstewitz, C., López-León, L., Martínez-Villafañe, A. (2008). Modeling the time-to-corrosion cracking of reinforced concrete structures by finite element. Corrosion 64 (7), 600?606. https://doi.org/10.5006/1.3278495

Chung, L., Najm, H., Balaguru, P. (2008). Flexural behavior of concrete slabs with corroded bars. Cement. Concrete Comp. 30 (3), 184?193. https://doi.org/10.1016/j.cemconcomp.2007.08.005

Elsener, B. (2002). Macrocell corrosion of steel in concrete-implications for corrosion monitoring. Cement. Concrete Comp. 24 (1), 65?72. https://doi.org/10.1016/S0958-9465(01)00027-0

Fajardo, S., Sánchez-Deza, A., Criado, M., La Iglesia, A., Bastidas, J.M. (2014). Corrosion of steel embedded in fly ash mortar using a transmission line model. J. Electrochem. Soc. 161 (8), E3158?E3164. https://doi.org/10.1149/2.019408jes

García, J., Almeraya, F., Barrios, C., Gaona, C., Núñez, R., López, I., Rodríguez, M., Martínez-Villafañe, A., Bastidas, J.M. (2012). Effect of cathodic protection on steel-concrete bond strength using ion migration measurements. Cement. Concrete Comp. 34 (2), 242?247. https://doi.org/10.1016/j.cemconcomp.2011.09.014

González, J.A., Benito, M., Feliu, S., Rodríguez, P., Andrade, C. (1995). Suitability of assessment methods for identifying active and passive zones in reinforced concrete. Corrosion 51 (2), 145?152. https://doi.org/10.5006/1.3293586

González, J.A., Ramírez, E., Bautista, A., Feliu, S. (1996). The behavior of pre-rusted steel in concrete. Cement. Concrete Res. 26 (3), 501?511. https://doi.org/10.1016/S0008-8846(96)85037-X

Hutchinson, J.W., Suo, Z. (1992). Mixed mode cracking in layered materials. In Advances in Applied Mechanics, Vol. 29, Hutchinson, J.W., Wu, T.Y. (Eds.), Academic Press, San Diego, CA, pp. 63-91. https://doi.org/10.1016/S0065-2156(08)70164-9

Jaegermann, C. (1990). Effect of water-cement ratio and curing on chloride penetration into concrete exposed to Mediterranean-sea climate. ACI Mater. J. 87 (4) 333?339. https://doi.org/10.14359/2039

Liu, Y., Weyers, R.E. (1998a). Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures. ACI Mater. J. 95 (6), 675?681. https://doi.org/10.14359/410

Liu, T., Weyers, R.W. (1998b). Modeling the dynamic corrosion process in chloride contaminated concrete structures. Cement. Concrete Res. 28 (3), 365-379. https://doi.org/10.1016/S0008-8846(98)00259-2

Martín-Pérez, B. (1999). Service life modelling of RC highway structures exposed to chlorides. PhD Dissertation, University of Toronto, Toronto.

Mohyeddin, A., Goldsworthy, H.M., Gad, E.F. (2013). FE modelling of RC frames with masonry infill panels under in-plane and out-of-plane loading. Eng. Struct. 51, 73?87. https://doi.org/10.1016/j.engstruct.2013.01.012

Molina, F.J., Alonso, C., Andrade, C. (1993). Cover cracking as a function of rebar corrosion. Part 2-Numerical model. Mater. Struct. 26 (9), 532?548. https://doi.org/10.1007/BF02472864

Oh, B.H., Kim, K.H., Jang, B.S. (2009). Critical corrosion amount to cause cracking of reinforced concrete structures. ACI Mater. J. 106 (4), 333-339. https://doi.org/10.14359/56653

Pantazopoulou, S.J., Papoulia, K.D. (2001). Modelling cover-cracking due to reinforcement corrosion in RC structures. J. Eng. Mech. 127 (4), 342?351. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342)

Popovics, S. (1973). A numerical approach to the complete stress-strain curve of concrete. Cement. Concrete Res. 3 (5), 583?599. https://doi.org/10.1016/0008-8846(73)90096-3

Raupach, M. (1996). Chloride-induced macrocell corrosion of steel in concrete-theoretical background and practical consequences. Constr. Build. Mater. 10 (5), 329?338. https://doi.org/10.1016/0950-0618(95)00018-6

Sánchez-Deza, A., Bastidas, D.M., La Iglesia, A., Bastidas, J.M. (2017). A simple thermodynamic model on the cracking of concrete due to rust formed after casting. Anti-Corros. Method. Mater. 64 (3), 335?339. https://doi.org/10.1108/ACMM-11-2015-1602

Sánchez-Deza, A., Bastidas, D.M., La Iglesia, A., Mora, E.M., Bastidas, J.M. (2018). Service life prediction for 50-year-old buildings in marine environments. Rev. Metal. 54 (1), e111. https://doi.org/10.3989/revmetalm.111

Thorenfeldt, E., Tomaszewicz, A., Jensen, J.J. (1987). Mechanical properties of high-strength concrete and applications in design. Proc. Symposium on Utilization of High-Strength Concrete, Tapir, Trondheim, Norway, pp. 149?159.

Timoshenko, S., Goodier, J. (1970). Theory of Elasticity. McGraw-Hill International Book Company, New York, pp. 41?46.

Torres-Acosta, A., Sagües, A. (2004). Concrete cracking by localized steel corrosion - geometric effects. ACI Mater. J. 101 (6), 501?507. https://doi.org/10.14359/13489

Vu, K., Stewart, M.G., Mullard, J. (2005). Corrosion-induced cracking: experimental data and predictive models. ACI Struct. J. 102 (5), 719-726. https://doi.org/10.14359/14667

Wang, C.T. (1953). Applied Elasticity. McGraw-Hill International Book Company, New York.

Zhang, J., Ling, X., Guan, Z. (2017). Finite element modeling of concrete cover crack propagation due to non-uniform corrosion of reinforcement. Constr. Build. Mater. 132 (2), 487-499. https://doi.org/10.1016/j.conbuildmat.2016.12.019

Published

2019-09-30

How to Cite

Castorena-González, J. H., Gaona-Tiburcio, C., Bastidas, D. M., Núñez-Jáquez, R. E., Bastidas, J. M., & Almeraya-Calderón, F. M. (2019). Finite element modelling to predict reinforced concrete corrosion-induced cracking. Revista De Metalurgia, 55(3), e150. https://doi.org/10.3989/revmetalm.150

Issue

Section

Articles

Most read articles by the same author(s)