Revista de Metalurgia, Vol 55, No 3 (2019)

Investigación sobre el comportamiento al desgaste de los compuestos Alumix321/SiC envejecidos y fabricados por prensado en caliente


https://doi.org/10.3989/revmetalm.148

Hülya Durmuş
Manisa Celal Bayar University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Turquía
orcid http://orcid.org/0000-0002-7270-562X

Canser Gül
Manisa Celal Bayar University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Turquía
orcid http://orcid.org/0000-0002-1339-936X

Nilay Çömez
Manisa Celal Bayar University, Engineering Faculty, Department of Metallurgical and Materials Engineering, Turquía
orcid http://orcid.org/0000-0002-6432-6582

Melis Yurddaşkal
Manisa Celal Bayar University, Department of Mechanical Engineering, Turquía
orcid http://orcid.org/0000-0002-8774-3848

Resumen


La industria aeroespacial y del automóvil están necesitadas de materiales que combinen varias características, tales como bajo peso, elevada resistencia mecánica, alta resistencia a la corrosión y al desgaste. Las propiedades de las aleaciones de aluminio se pueden mejorar enormemente mediante el refuerzo utilizando partículas cerámicas. El objetivo de este estudio es analizar el efecto del envejecimiento por precipitación en el endurecimiento y el porcentaje de masa de partículas de SiC en la dureza y resistencia al desgaste de los compuestos de matriz de aluminio 6061, fabricados mediante prensado en caliente. Los compuestos se trataron en solución a 530 °C durante 1,5 h y luego se envejecieron artificialmente a 160 °C durante 18 h. La prueba de desgaste mediante un disco de bola se llevó a cabo con una carga 2 N y utilizando una bola de alúmina. La densidad de los compuestos se determinó de acuerdo con el principio de Arquímedes. La porosidad aumentó a medida que se incrementó el refuerzo de SiC. La dureza y la resistencia al desgaste mejoraron con las partículas de SiC y el envejecimiento. La dureza máxima y la pérdida de desgaste mínima se obtuvieron en muestras tratadas térmicamente que contenáin un 20% en peso de refuerzo de SiC.

Palabras clave


Aleación aluminio 6061; Alumix321; Compuesto; Desgaste; Envejecimiento; SiC

Texto completo:


HTML PDF XML

Referencias


Ahmad, R., Bakar, M.A. (2011). Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer method. Mater. Design 32 (10), 5120-5126. https://doi.org/10.1016/j.matdes.2011.06.007

Altinkok, N., Koker, R. (2004). Neural network approach to prediction of bending strength and hardening behaviour of particulate reinforced (Al-Si-Mg)-aluminium matrix composites. Mater. Design 25 (7), 595-602. https://doi.org/10.1016/j.matdes.2004.02.014

Bedir, F. (2007). Characteristic properties of Al-Cu-SiCp and Al-Cu-B4Cp composites produced by hot pressing method under nitrogen atmosphere. Mater. Design 28 (4), 1238-1244. https://doi.org/10.1016/j.matdes.2006.01.003

Cui, Y., Jin, T., Cao, L., Liu, F. (2016). Aging behavior of high volume fraction SiCp/Al composites fabricated by pressureless infiltration. J. Alloys Compd. 681, 233-239. https://doi.org/10.1016/j.jallcom.2016.04.127

Elangovan, K., Balasubramanian, V. (2008). Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Mater. Charact. 59 (9), 1168-1177. https://doi.org/10.1016/j.matchar.2007.09.006

Gu, W.L. (2006). Bulk Al/SiC nanocomposite prepared by ball milling and hot pressing method. T. Nonferr. Metal. Soc. China 16 (Sup. 1), 398-401. https://doi.org/10.1016/S1003-6326(06)60219-7

Hassani, A., Bagherpour, E., Qods, F. (2014). Influence of pores on workability of porous Al/SiC composites fabricated through powder metallurgy + mechanical alloying. J. Alloys Compd. 591, 132-142. https://doi.org/10.1016/j.jallcom.2013.12.205

Jiang, Y., Xu, R., Tan, Z., Ji, G., Fan, G., Li, Z., Xiong, D., Guo, Q., Li, Z., Zhang, D. (2019). Interface-induced strain hardening of graphene nanosheet/aluminum composites. Carbon 146, 17-27. https://doi.org/10.1016/j.carbon.2019.01.094

Karabacak, A.H., Canakci, A., Ozkaya, S., Calıgulu, U. (2017). Microstructure and Mechanical Properties of Al2024-B4C Nanocomposite Produced by Mechanical Alloying and Hot Pressing Method. Proceedings 8th International Advanced Technologies Symposium (IATS'17), Eds: Özdemir, N., Esen, H., Fırat University Elazı?-TURKIYE, p.1323.

Knowles, A.J., Jiang, X., Galano, M., Audebert, F. (2014). Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. J. Alloys Compd. 615, 401-405. https://doi.org/10.1016/j.jallcom.2014.01.134

Laska, M., Kazior, J. (2012). Influence of various process parameters on the density of sintered aluminium alloys. Acta Polytechnica 52 (4), 93-95. https://core.ac.uk/download/ pdf/81646773.pdf.

Mazahery, A., Abdizadeh, H., Baharvandi, H.R. (2009). Development of high-performance A356/Nano-Al2O3 composites. Mater. Sci. Eng. A 518 (1-2), 61-64. https://doi.org/10.1016/j.msea.2009.04.014

Nassef, A., El-Hadek, M. (2015). Mechanics of hot pressed aluminum composites. Int. J. Adv. Manuf. Tech. 76 (9-12), 1905-1912. https://doi.org/10.1007/s00170-014-6420-4

Ogel, B., Gurbuz, R. (2001). Microstructural characterization and tensile properties of hot pressed Al-SiC composites prepared from pure Al and Cu powders. Mater. Sci Eng. A 301 (2), 213-220. https://doi.org/10.1016/S0921-5093(00)01656-7.

Ozturk, F., Sisman, A., Toros, S., Kilic, S., Picu, R.C. (2010). Influence of aging treatment on mechanical properties of 6061 aluminum alloy. Mater. Design 31 (2), 972-975. https://doi.org/10.1016/j.matdes.2009.08.017

Reis, D.A., Couto, A.A., Domingues Jr, N.I., Hirschmann, A.C., Zepka, S., Moura Neto, C. (2012). Effect of artificial aging on the mechanical properties of an aerospace aluminum alloy 2024. Defect. Diffus. Forum 326-328, 193-198. https://doi.org/10.4028/www.scientific.net/DDF.326-328.193

Salman, K.D. (2017). Comparison the Physical and Mechanical Properties of Composite Materials (Al /SiC and Al/ B4C) Produced by Powder Technology. Journal of Engineering 23 (10), 85-96. http://joe.uobaghdad.edu.iq/index.php/main/article/view/173.

Soltani, S., Khosroshahi, RA., Mousavian, R.T., Jiang, Z.Y., Boostani, A.F., Brabazon, D. (2017). Stir casting process for manufacture of Al-SiC composites. Rare Metals 36 (7), 581-590. https://doi.org/10.1007/s12598-015-0565-7

Su?niak, M., Karwan-Baczewska, J., Dutkiewicz, J., Grande, M.A., Rosso, M. (2015). An experimental study of aluminum alloy matrix composite reinforced SiC made by hot pressing method. Arch. Metall. Mater. 60 (2), 1523-1527. https://doi.org/10.1515/amm-2015-0165

Tang, F., Anderson, I.E., Gnaupel-Herold, T., Prask, H. (2004). Pure Al matrix composites produced by vacuum hot pressing: tensile properties and strengthening mechanisms. Mater. Sci. Eng. A 383 (2), 362-373. https://doi.org/10.1016/j.msea.2004.05.081

Ulvi Gezici, L., Gül, B., Çavdar, U. (2018). The mechanical and tribological characteristic of Aluminium-Titanium dioxide composites. Rev. Metal. 54 (2), e119. https://doi.org/10.3989/revmetalm.119

Wang, A.Q., Guo, H.D., Han, H.H., Xie, J.P. (2017). Effect of Solid Solution and Ageing Treatments on the Microstructure and Mechanical Properties of the SiCp/Al-Si-Cu-Mg Composite. Kem. Ind. (UDK) 66 (7-8), 345-351. https://doi.org/10.15255/KUI.2016.025

Wierszy??owski, I., Stankowiak, A., Wieczorek, S., Samolczyk, J. (2005). Kinetics of transformation during supersaturation and aging of the Al-4.7 mass% Cu alloy: Grain size, dilatometric, and differential thermal analysis studies. J. Phase Equilib. Diff. 26 (5), 555-560. https://doi.org/10.1007/s11669-005-0050-3

Wu, Y., Kim, G.-Y. (2015). Compaction behavior of Al6061 and SiC binary powder mixture in the mushy state. J. Mater. Process. Tech. 216, 484-491. https://doi.org/10.1016/j.jmatprotec.2014.10.003




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es