Revista de Metalurgia, Vol 55, No 4 (2019)

Corrosión del aluminio 1050 en atmósferas costeras


https://doi.org/10.3989/revmetalm.153

Iván Díaz
Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), España
orcid https://orcid.org/0000-0003-3981-985X

María Fuentes
Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), España
orcid https://orcid.org/0000-0002-3001-9808

Daniel de la Fuente
Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), España
orcid https://orcid.org/0000-0003-4540-3180

Belén Chico
Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), España
orcid https://orcid.org/0000-0001-8697-6298

José A. Jiménez
Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), España
orcid https://orcid.org/0000-0003-4272-6873

Manuel Morcillo
Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), España
orcid https://orcid.org/0000-0002-7355-0092

Resumen


Existen escasos estudios realizados sobre la corrosión atmosférica del aluminio en zonas costeras en los que se considere un amplio intervalo de salinidades atmosféricas. El trabajo, que aquí se presenta, ofrece los resultados de una investigación llevada a cabo en seis estaciones de ensayo situadas en atmósferas marinas puras ubicadas a diferentes distancias de la línea de costa dentro del Parque eólico Cabo Vilano (Galicia). Se expusieron probetas de ensayo de aluminio 1050 en las atmósferas marinas durante 3, 6, 9 y 12 meses, determinándose la corrosión experimentada por el aluminio (formación de picaduras) en función del tiempo de exposición. Se analizó la naturaleza y composición de los productos de corrosión formados mediante difracción de rayos X con ángulo rasante. Asimismo, se estudió la morfología del ataque experimentado por el aluminio mediante microscopía electrónica de barrido con espectrometría de rayos X por dispersión de energías. Como resultados más relevantes cabe destacar: (a) El alcance de la velocidad de corrosión disminuye conforme nos alejamos de la línea de costa y avanza el tiempo de exposición, (b) El producto de corrosión formado es gibsita, (c) El progreso de las picaduras se debe a la presencia de los aniones Cl- y SO42-, procedentes del aerosol marino que migran hacia el fondo de las picaduras.

Palabras clave


Aluminio; Corrosión atmosférica; Corrosión por picaduras; Salinidad

Texto completo:


HTML PDF XML

Referencias


Alcántara, J., Chico, B., Díaz, I., de la Fuente, D., Morcillo, M. (2015). Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel. Corros. Sci. 97, 74-88. https://doi.org/10.1016/j.corsci.2015.04.015

Aziz, P.M., Godard, H.P. (1952). Pitting Corrosion Characteristics of Aluminum - Influence of Magnesium and Manganese. Ind. Eng. Chem. 44 (8), 1791-1795. https://doi.org/10.1021/ie50512a028

Berukshtis, G.K., Klark, G.B. (1966). Atmospheric corrosion of steel, zinc, cadmium, copper and aluminium in different coastal and continental regions. In Corrosion of metals and alloys, Tomashov, N.D. and Mirolyubev, E.N., Editors, Jerusalem, Israel pp. 281-297.

Booth, F.F., Godard, H.P. (1965). Corrosion Behavior of Aluminum. Alloys in Seawater, Congres international de la corrosion marine et des salissures, Cannes.

Carter, V.E. (1968). Atmospheric corrosion of Aluminum and Its Alloys; Results of six-year exposure tests. En: Metal corrosion in the atmosphere. ASTM STP 435, American Society for Testing and Materials, pp. 257-270. https://doi.org/10.1520/STP34093S

EN ISO 9226 (2012). Corrosion of metals and alloys, corrosivity of atmospheres, determination of corrosion rate of standard specimens for the evaluation of corrosivity. Anexo A, European Committee for Standardization, Brussels.

EN ISO 9225 (2012). Corrosion of metals and alloys, corrosivity of atmospheres, measurement of environmental parameters affecting corrosivity of atmospheres. European Committee for Standardization, Brussels.

EN ISO 9223 (2012). Corrosion of metals and alloys, corrosivity of atmospheres, clasification, determination and estimation. European Committee for Standardization, Brussels.

de la Fuente, D., Otero-Huerta, E., Morcillo, M. (2007). Studies of long-term weathering of aluminium in the atmosphere. Corros. Sci. 49 (7), 3134-3148. https://doi.org/10.1016/j.corsci.2007.01.006

Feliu, S., Morcillo, M. (1982). Corrosión y protección de los metales en la atmósfera. Edicions Bellaterra, S.A., Barcelona, España.

Golubev, A.I., Kadyrov, M.K. (1969). Calculation of moistening and metallic corrosion in atmospheric environment. Paper presented at the Third international Congress on Metallic Corrosion, Moscow.

González, J.A., Morcillo, M., Escudero, E., López, V., Otero, E. (2002). Atmospheric corrosion of bare and anodized aluminium in a wide range of environmental conditions. Part I: Visual observations and gravimetric results. Surf. Coat. Tech. 153 (2-3), 225-234. https://doi.org/10.1016/S0257-8972(01)01680-2

Graedel, T.E. (1989). Corrosion mechanisms for aluminum exposed to the atmosphere. J. Electrochem. Soc. 136 (4), 204C-212C. https://doi.org/10.1149/1.2096869

Haynie, F.H., Spence, J.W., Upham, J.B. (1976). Effects of gaseous pollutants on materials : a chamber study. Report EPA-600/3-76-015. U.S. Environmental Protection Agency, Research Triangle Park, USA.

Kaesche, H. (1974). Localized corrosion. NACE, Williamsburg Conference, Houston, p. 516.

Kentzler, O., Hoff, P. (1975). Behavior of an Aluminum Roof Exposed Over a Prolonged Period to Industrial Atmosphere. Schweiz. Alum. Rundsch. 25 (1), 11-19.

Kucera, V., Mattson, E. (1987). Atmospheric Corrosion. In Corrosion Mechanisms. Mansfeld, F. (Ed.), Dekker, New York.

Lashermes, M., Guilhaudis, A., Reboul, M., Trentelivres, G. (1982). Thirty-year atmospheric corrosion of aluminium alloys in France. In Atmospheric Corrosion, W. H. Ailor (Ed.), John Wiley and Sons, New York, pp. 353-364.

Leygraf, C., Wallinder, I.O., Tidblad, J., Graedel, T. (2016). Atmospheric corrosion. 2nd Edition, John Wiley & Sons, Inc., USA. https://doi.org/10.1002/9781118762134

Liang, M., Melchers, R., Chaves, I. (2018). Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones. Corros. Sci. 140, 286-296. https://doi.org/10.1016/j.corsci.2018.05.036

Liu, Y., Wang, Z., Ke, W. (2014). Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al. Corros. Sci. 80, 169-176. https://doi.org/10.1016/j.corsci.2013.11.027

Longo, F.N., Durmann, G.J. (1978). Atmospheric factors affecting the corrosion of engineering metals. ASTM STP 646, ASTM International, West Conshohocken, PA, USA, pp. 97-114.

McGeary, F.L., Summerson, T.J., Ailor, W.H. (1968). Atmospheric Exposure of Nonferrous Metals and Alloys-Aluminum Seven-year Data. En: Metal corrosion in the atmosphere. ASTM STP 435, American Society for Testing and Materials, pp. 141-174. https://doi.org/10.1520/STP34085S

Mikhailovskii, Y.N., Klark, G.B., Shuvakhina, L.A., Agafonov, V.V., Zhuravlena, N.I. (1973). Calculation of atmospheric corrosion rate of aluminium and its alloys in various climatic zones according to meteorological parameters. Prot. Met. 9 (3), 240-246.

Morcillo, M., Almeida, E., Rosales, B. (2000a). Corrosion of Aluminium in pure Marine Atmospheres. Aluminium 76 (7/8), 610-615.

Morcillo, M., Almeida, E., Rosales, B. (2000b). Corrosion of Aluminium in SO2 - Polluted Marine Atmospheres. Aluminium 76 (12), 1066-1070.

Morcillo, M., Almeida, E., Rosales, B. (2000c). Degradation of Aluminium in Rural Atmospheres. Aluminium 76 (4), 316-319.

Natesan, M., Venkatachari, G., Palaniswamy, N. (2006). Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India. Corros. Sci. 48 (11), 3584-3608. https://doi.org/10.1016/j.corsci.2006.02.006

Otero, E., Lizarbe, R., Feliu, S. (1971). Comportamiento de probetas pulidas de aluminio expuestas en un atmósfera marina de España. Rev. Metal. 7 (5), 359-368.

Otero, E., Lizarbe, R., Feliu, S. (1978). Behaviour of aluminium during 10 years' exposure at a coastal test site at Alicante. Brit. Corros. J. 13 (2), 82-84. https://doi.org/10.1179/000705978798318800

Pilson, M.E.Q. (1998). An Introduction to the Chemistry of the Sea. First Edition, Ed., Pearson Education Inc., Prentice Hall, UK.

Portella, M.O.G., Portella, K.F., Pereira, P.A.M., Inone, P.C., Brambilla, K.J.C., Cabussú, M.S., Cerqueira, D.P., Salles, R.N. (2012). Atmospheric corrosion rates of copper, galvanized steel, carbon steel and aluminum in the metropolitan region of Salvador, BA, Northeast Brazil. Procedia Engineering 42, 171-185. https://doi.org/10.1016/j.proeng.2012.07.408

Santamaría, A. (1990). Corrosión del aluminio 1050 en el País Vasco, Ph.D. Thesis, Universidad del País Vasco.

Speding, P.L. (1971). Corrosion by atmospheric sulphur dioxide. Australas. Corros. Eng. 15 (8), 27-36.

Tidblad, J., Kucera, V., Mikhailov, A.A. (1998). Statistical analysis of 8 year materials exposure and acceptable deterioration and pollution levels. Swedish Corrosion Institute, Stockholm, Sweden.

Vargel, C. (1981). El comportamiento del aluminio y sus aleaciones. Urmo S.A. de Ediciones, España.

Vera, R., Delgado, D., Rosales, B.M. (2006). Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy. Corros. Sci. 48 (10), 2882-2900. https://doi.org/10.1016/j.corsci.2005.11.012

Villars, P., Cenzual, K. (2018). Pearson's Crystal Structure Database for Inorganic Compounds. Release 2017/2018, ASM International, Materials Park, Ohio, USA.

Walton, C.J., Sprowls, D.O., Nock, J.A. (1953). Resistance of aluminium alloys to weathering. Corrosion 9 (10), 345-358. https://doi.org/10.5006/0010-9312-9.10.345

Walton, S.I., King, W. (1955). Symposium on Atmospheric Corrosion of Non-ferrous Metals, American Society for Testing Materials, PA, USA.




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista revmetal@cenim.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es