Effect of the weld thermal cycles by the modified indirect electric arc (MIEA) on the mechanical properties of the AA6061-T6 alloy

Authors

  • Ricardo R. Ambriz Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo
  • Gerardo Barrera Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo
  • Rafael García Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo
  • Victor H. López Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.3989/revmetalm.0801

Keywords:

Aluminum alloy, Melted pool, Heat affected zone, Transformations, Overaging, Weld thermal cycle

Abstract


Results of temperature measurements during welding of 12.7 mm thick AA6061-T6 alloy plates by modified indirect electric arc (MIEA) are presented. This study describes the thermal cycles of the heat affected zone (HAZ) and also in the fusion zone. Depending upon the position of the transducers, the maximum temperatures measured in the HAZ range from 308 to 693 °C, these measurements were related with the tensile test results, and the failure zone reported previously by the authors [1]. It was observed that, there is a decrease in the mechanical strength of the welded joints, due to the microstructural changes suffered by AA6061-T6 alloy in which formation of the β’ occurs according to the TTT transformation diagram. The inherent cooling conditions of the weld pool observed for the MIEA technique (only one pass of welding), have permitted to establish the characteristics of solidification and microstructure for a specific cooling rate.

Downloads

Download data is not yet available.

References

[1] R. R. Ambriz, G. Barrera y R. García, S&I 11 (2006) 10-17.

[2] V. Malin, Weld. J. 74 (1995) 305s-318s.

[3] Y. Li, L. E. Murr y J. C. Mc Clure, Mat. Sci. Eng. A 271 (1999) 213-223. doi:10.1016/S0921-5093(99)00204-X

[4] N. A. Anderson, Instrumentation for Process Measurement and Control., pp. 131-133.

[5] ASM, Heat Treater´s Guide: Nonferrous Alloys, p. 204.

[6] C. Huang y S. Kou, Weld. J. (2004) 111s-122s.

[7] O. R Myhr, O. Grong, H. G. Fjaer y C. D. Marioara, Acta Mater. 52 (2004) 4.997-5.008.

[8] M. J. Lu y S. Kou, Weld. J. (1989) 382-s-388-s.

[9] J. E. Hatch, Aluminum Properties and Physical Metallurgy, Ohio, 1993, pp. 134-148.

[10] G. J. Davies y J. G. Garland, Int. Metall. Rev. 20 (1975) 83-106.

[11] R. Garcia, V. H. Lopez, J. Mater. Sci. 42 (2006) 7856-7963.

[12] R. Garcia, V. H. Lopez, A. R. Kennedy y G. Arias, J. Mater. Sci. 42 (2007) 7794-7800. doi:10.1007/s10853-007-1632-8

[13] R. Garcia, V. H. Lopez, E. Bedolla y A. Manzano, J. Mater. Sci. Lett. 21 (2002) 1.965-1.967.

[14] R. Garcia, V. H. Lopez, E. Bedolla y A. Manzano, J. Mat. Sci. 38 (2003) 2.771-2.779.

[15] V. H. López. R. García y E. Bedolla, Metall. Mater. Trans. B (2002) 932-937.

[16] ASTM, Standard Test Methods of Tension Testing Wrought and Cast Aluminum-and Magnesium- Alloy Products [Metric], ASTM, 1994, pp. 419- 429.

[17] O. O. Grong, Metallurgical Modelling of Welding, The Institute of Materials, 1997, pp. 221-278.

[18] D. Rosenthal, Trans. ASME (1946) 849-866.

[19] T. Sheppard, Mater. Sci. Tech. 4 (1988) 636.

[20] I. Dutta y S. M. Allen, J. Mater. Sci. Lett. 10 (1991) 323-326. doi:10.1007/BF00719697

[21] A. O. Kluken y B. Bjorneklett, Weld. J. (1997) 39-44.

[22] L. A. Guiterrez, G. Neye y E. Zschech, Weld. J. (1996) 116s-121s.

[23] S. A. David y J. M. Vitek, Mat. Rev. 34 (1989) 213-245.

[24] W. Kurz y D. J. Fisher, Fundamentals of Solidification, Aedermannsdorf (Switzerland), 1989.

Downloads

Published

2009-02-28

How to Cite

Ambriz, R. R., Barrera, G., García, R., & López, V. H. (2009). Effect of the weld thermal cycles by the modified indirect electric arc (MIEA) on the mechanical properties of the AA6061-T6 alloy. Revista De Metalurgia, 45(1), 42–51. https://doi.org/10.3989/revmetalm.0801

Issue

Section

Articles

Most read articles by the same author(s)