Welding repair process of vanadium steel grooved rails and its validation by means of finite element modelization (FEM)

Authors

DOI:

https://doi.org/10.3989/revmetalm.168

Keywords:

FCA weld, FEM, Rail, Tramway, Vanadium steel, Wear

Abstract


Arc welding repair procedures are widely used to increase the life service of grooved rails on trams. However, the new polymeric embedments used with these rails limit the temperature that can be achieved during the repair process, as these materials degrade when they are heated above 170 ºC. To avoid this problem, an optimum weld repair procedure must be developed to ensure an economically and fast weld without exceeding the limited temperature of the embedment. In this study, the repair of the new R290V rail steel (vanadium alloyed) was carried out with an austenitic stainless-steel consumable and a flux core arc welding technology (FCAW). The procedure was designed and validated using a finite element simulation and it was proved that it is possible to repair these rails without even attaining above 140 ºC in the embedment and without the formation of martensite.

Downloads

Download data is not yet available.

References

ArcelorMittal (2018). Grooved Rails for Tramways. Techni­cal Manual. ArcelorMittal Europe Long Products. Rails & Special Sections. https://rails.arcelormittal.com/documentos/12-english/download.

Borck, R. (2019). Public transport and urban pollution. Reg. Sci. Urban. Econ. 77, 356-366. https://doi.org/10.1016/j.regsciurbeco.2019.06.005

Bullon, W., Acosta, J., Franco, R., Valverde, Q. (2007). Simu­lación de un proceso de soldadura mediante un modelo Termo-Mecánico considerando el efecto de esfuerzos residuales utilizando el Método de los Elementos Fini­tos. 8º Congreso Iberoamericano de Ingeniería Mecánica. http://congreso.pucp.edu.pe/cibim8/pdf/20/20-38.pdf.

Carrese, S., Gemma, A., La Spada, S. (2014). An emission model to compare bus and tramway transport. Procedia Soc. Behav. Sci. 111, 1025-1034. https://doi.org/10.1016/j.sbspro.2014.01.137

Carrol, R., Smith, H.M., Jaiswal, S. (2013). Rail steel with an excellent combination of wear properties and rolling con­tact fatigue resistance. U.S. Patent No 8430976.

Cho, S. (2018). 30 years working together solve Shangai's most pressing water problems. Worldbank. https://blogs.world­bank.org/water/30-years-working-together-solve-shang­hai-s-most-pressing-water-problems.

ESAB (2019). Proceso de Soldadura FCAW - Alambre Tubu­lar Relleno de Fundente. https://www.esab.com.ar/ar/sp/education/blog/proceso-soldadura-fcaw-alambre-tubular-relleno-de-fundente-definiciones-del-proceso.cfm.

Goldack, J., Chakravarti, A., Bibby, M. (1984). A new finite ele­ment model for welding heat sources. Metall. Trans. B 15 (2), 299-305. https://doi.org/10.1007/BF02667333

Goldaman, T., Gorham, R. (2006). Sustainable urban transport: Four innovative directions. Technol. Soc. 28 (1-2), 261-273. https://doi.org/10.1016/j.techsoc.2005.10.007

Marqueteeken, A., Van Leuven, A., Kopf, F. (2008). Cost effec­tive track maintenance, renewal & refurbishment methods. Preventive maintenance of embedded tram tracks Rail wear in curves and special trackwork for trams. URBAN TRACK Project.

Martín, L., Calvo, F., Hermoso, A., De Oña, J. (2014). Analy­sis of light rail systems in Spain according to their type of funding. Procedia Soc. Behav. Sci. 162, 419-428. https://doi.org/10.1016/j.sbspro.2014.12.223

Martínez, E., Estrems, M., Miguel, V., Garrido, A., Guillén, J. A. (2009). Estado del arte de la modelización numérica de los procesos de soldadura por arco eléctrico emplea­dos en construcción metálica. XIII Congreso Interna­cional de Ingeniería de Proyectos, Badajoz, pp. 8-10. https://www.aeipro.com/files/congresos/2009badajoz/ciip09_0460_0475.2486.pdf.

Pacyna, J. (2008). The microstructure and properties of the new bainitic rail steels. J. Achiev. Mater. Manuf. Eng. 28 (1), 19-22.

Rosenthal, D. (1946). The theory of moving sources of heat and its application of metal treatments. ASME, Vol. 68, pp. 849-866.

Rykalin, N.N., Nikolaev, A.V., Goronkov, O.A (1971). Calcula­tion of current density in anode spot of arc. Teplofiz. Vys. Temp. (9), 981-985.

Sandor, T., Ramsey, J. (2012). Microstructure development in embedded tram rails due to ESAB cyclic surface welding technology without preheating. ESAB Global Market.

Sandor, T., Ramsey, J., Dumovic, M., Wiseman, R. (2013). Onsite repair welding of rails. Metals New Zealand.

Solano-Alvarez, W., Fernandez Gonzalez, L., Bhadeshia, H.K.D.H. (2019). The effect of vanadium on the wear resistance of pearlitic grooved rails. Wear 436-437, 203004. https://doi.org/10.1016/j.wear.2019.203004

TCRP (2012). Track design handbook for light rail transit. Sec­ond Edition, Report 155. Transportation Research Board, EEUU.

UNE-EN 14811 (2011). Aplicaciones ferroviarias. Carriles para fines especiales: construcción asociada y acanalada, AENOR. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0046749.

UNE-EN 6507-1 (2018). Metallic Materials. Vickers hardness test, AENOR.

Vuorinen, E., Wang, L., Stanojevic, S., Prakash, B. (2009). Influ­ence of retained austenite on rolling-sliding wear resistance of austempered silicon alloyed steel. International Confer­ence on Hot Sheet Metal Forming of High-Performance Steel, pp. 339-347.

Westby, O. (1968). Temperature Distribution in the Workpiece by Welding. Dept. of Metallurgy and Metals Working, The Technical Univ. of Norway. PhD Dissertation.

Zahiri, R., Sundaramoorthy, R., Lysz, P., Subramanian, C. (2014). Hardfacing using ferro-alloy powder mixtures by submerged arc welding. Surf. Coat. Tech. 260, 220-229. https://doi.org/10.1016/j.surfcoat.2014.08.076

Published

2020-06-30

How to Cite

Galán-Rivera, D. R., Orviz-Theodosius, M. J., Vigil, M., Miranda, D., & Belzunce-Varela, F. J. (2020). Welding repair process of vanadium steel grooved rails and its validation by means of finite element modelization (FEM). Revista De Metalurgia, 56(2), e168. https://doi.org/10.3989/revmetalm.168

Issue

Section

Articles