Efecto del tratamiento de sellado en el comportamiento frente a corrosión de la aleación anodizada de aluminio-litio AA2099

Autores/as

DOI:

https://doi.org/10.3989/revmetalm.180

Palabras clave:

Aleación aluminio-litio AA2099, Anodizado, Corrosión, Impedancia electroquímica, MEB, XPS

Resumen


El comportamiento frente a corrosión de la aleación de aluminio AA2099 anodizado en solución de H2SO4, aplicando dos densidades de corriente diferentes, 0,19 o 1,0 A·cm−2, con dos tratamientos de sellado diferentes en H2O y en Na2Cr2O7 (6% peso) a 95 °C, se ha estudiado en disoluciones de NaCl (3,5% peso) y de H2SO4 (10% vol). La aleación AA2099 se usa ampliamente en aplicaciones aeronáuticas, por tanto, se requiere que presente un buen comportamiento frente a la corrosión en ambientes de cloruro y lluvia ácida. La morfología de la superficie de la película anodizada se caracterizó por microscopía electrónica de barrido (MEB), se estudió el comportamiento frente a corrosión electroquímica empleando la impedancia electroquímica (EIS), y finalmente la caracterización de la composición química de la superficie se reveló por espectroscopía de fotoelectrones de rayos X (XPS). Se encontró que el tratamiento de sellado con Na2Cr2O7 (6% peso), genera una capa pasiva más homogénea y compacta, y tiende a aumentar la resistencia a la transferencia de carga, mejorando así el comportamiento frente a corrosión del AA2099 anodizado.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Citlalli Gaona-Tiburcio, Universidad Autónoma de Nuevo León

 

 

Citas

Abrahami, S.T., Hauffman, T., de Kok, J.M.M., Mol, J.M.C, Terryn, H. (2015). XPS Analysis of the surface chemistry and interfacial bonding of barrier-type Cr(VI)-free anodic oxides. J. Phys. Chem. C. 119 (34), 19967-19975. https://doi.org/10.1021/acs.jpcc.5b05958

Ardelean, H., Frateur, I., Zanna, S., Atrens, A., Marcus, P. (2009). Corrosion protection of AZ91 magnesium alloy by anodizing in niobium and zirconium-containing electrolytes. Corros. Sci. 51 (12), 3030-3038. https://doi.org/10.1016/j.corsci.2009.08.030

ASTM G106-89 (2015). Standard practice for verification of algorithm and equipment for electrochemical impedance measurements. ASTM International, West Conshohocken, PA USA.

Ayagou, M.D.D., Tran, T.T.M., Tribollet, B., Kittel, J., Sutter, E., Ferrando, N., Mendibide, C., Duret-Thual, C. (2018). Electrochemical impedance spectroscopy of iron corrosion in H2S solutions. Electrochim. Acta 282, 775-783. https://doi.org/10.1016/j.electacta.2018.06.052

Bastidas, D.M. (2007). Interpretation of impedance data for porous electrodes and diffusion processes. Corrosion 63 (6), 515-521. https://doi.org/10.5006/1.3278402

Bastidas, J.M., Polo, J.L., Torres, C.L., Cano, E. (2001). A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function. Corros. Sci. 43 (2), 269-281. https://doi.org/10.1016/S0010-938X(00)00082-2

Cumpson, P.J. (1995). Angle-resolved XPS and AES: Depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods. J. Electron Spectrosc. Relat. Phenom. 73 (1), 25-52. https://doi.org/10.1016/0368-2048(94)02270-4

Dale, K.H. (1970). Anodizing aluminum. Patent US3524799A.

Deng, Y., Bai, J., Wu, X., Huang, G., Cao, L., Huang, L. (2017) Investigation on formation mechanism of T1precipitate in an Al-Cu-Li alloy. J. Alloys Compd. 723, 661-666. https://doi.org/10.1016/j.jallcom.2017.06.198

Deschamps, A., Decreus, B., De Geuser, F., Dorin, T., Weyland, M. (2013). The influence of precipitation on plastic deformation of Al-Cu-Li alloys. Acta Mater. 61 (11), 4010-4021. https://doi.org/10.1016/j.actamat.2013.03.015

Deschamps, A., Garcia, M., Chevy, J., Davo, B., De Geuser, F. (2017). Influence of Mg and Li content on the microstructure evolution of Al-Cu-Li alloys during long-term ageing. Acta Mater. 122, 32-46. https://doi.org/10.1016/j.actamat.2016.09.036

Djellab, M., Bentrah, H., Chala, A., Taoui, H. (2019). Synergistic effect of halide ions and gum arabic for the corrosion inhibition of API5L X70 pipeline steel in H2SO4. Mater. Corros. 70 (1), 149-160. https://doi.org/10.1002/maco.201810203

Etienne, M., Rocca, E., Chahboun, N., Veys-Renaux, D. (2016). Local evolution of pH with time determined by shear force-based scanning electrochemical microscopy: Surface reactivity of anodized aluminium. Electroanalysis 28 (10), 2466-2471. https://doi.org/10.1002/elan.201600294

Evertsson, J., Bertram, F., Rullik, L., Harlow, G., Lundgren, E. (2017). Anodization of Al(100), Al(111) and Al Alloy 6063 studiedin situwith X-ray reflectivity and electrochemical impedance spectroscopy. J. Electroanal. Chem. 799, 556-562. https://doi.org/10.1016/j.jelechem.2017.07.010

Fajardo, S.,Llorente, I.,Jiménez, J.A.,Bastidas, J.M.,Bastidas, D.M. (2019). Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution. Corros. Sci. 154, 246-253. https://doi.org/10.1016/j.corsci.2019.04.026

Gumbmann, E., De Geuser, F., Deschamps, A., Lefebvre, W., Robaut, F., Sigli, C. (2016a). A combinatorial approach for studying the effect of Mg concentration on precipitation in an Al-Cu-Li alloy. Scripta. Mater. 110, 44-47. https://doi.org/10.1016/j.scriptamat.2015.07.042

Gumbmann, E., Lefebvre, W., De Geuser, F., Sigli, C., Deschamps, A. (2016b). The effect of minor solute additions on the precipitation path of an Al-Cu-Li alloy. Acta Mater. 115, 104-114. https://doi.org/10.1016/j.actamat.2016.05.050

Halvorsen, I.J., Pivac, I., Bezmalinović, D., Barbir, F., Zenith, F. (2019). Electrochemical low-frequency impedance spectroscopy algorithm for diagnostics of PEM fuel cell degradation. Int. J. Hydrog. Energy 45 (2), 1325-1334.. https://doi.org/10.1016/j.ijhydene.2019.04.004

Hirschorn, B., Orazem, M.E., Tribollet, B., Vivier, V., Frateur, I., Musiani, M. (2010). Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 55 (21), 6218-6227. https://doi.org/10.1016/j.electacta.2009.10.065

Jaimes-Ramírez, R., Covelo, A., Rodil, S.E., Corona-Lira, P., Ramírez-Reivich, A.C., Hernández, M. (2018). Development and characterization of hydrophobic anodized aluminum layer to act as a long-lasting protective film in corrosion. Surf. Interface Anal. 50 (11), 1030-1035. https://doi.org/10.1002/sia.6437

Jinlong, L., Tongxiang, L., Chen, W., Ting, G. (2016). The passive film characteristics of several plastic deformation 2099 Al-Li alloy. J. Alloys Compd. 662, 143-149. https://doi.org/10.1016/j.jallcom.2015.12.051

Jirón-Lazos, U., Corvo, F., De la Rosa, S.C., García-Ochoa, E.M., Bastidas, D.M., Bastidas, J.M. (2018). Localized corrosion of aluminum alloy 6061 in the presence ofAspergillus niger. Int. Biodeter. Boidegr. 133, 17-25. https://doi.org/10.1016/j.ibiod.2018.05.007

Keller, F., Hunter, M.S., Robinson, D.L. (1953). Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 100, 411-419. https://doi.org/10.1149/1.2781142

Khan, M.F., Kumar, A.M., Ul-Hamid, A., Al-Hems, L.M. (2019). Achieving non-adsorptive anodized film on Al-2024 alloy: Surface and electrochemical corrosion investigation. Surf. Interfaces 15, 78-88. https://doi.org/10.1016/j.surfin.2019.02.005

Klotz, D. (2019). Negative capacitance or inductive loop? - A general assessment of a common low frequency impedance feature. Electrochem. Commun. 98, 58-62. https://doi.org/10.1016/j.elecom.2018.11.017

Liou, Y.-J., Chen, Y.J., Chen, B.-R., Lee, L.-M., Huang, C.-H. (2013). XPS study of aluminum coating on TiO2 anode of dye-sensitized solar cells. Surf. Coat. Tech. 231, 535-538. https://doi.org/10.1016/j.surfcoat.2012.02.008

Ma, Y., Zhou, X., Thompson, G.E., Curioni, M., Zhong, X., Koroleva, E., Skeldon, P., Thomson, P., Fowles, M. (2011). Discontinuities in the porous anodic film formed on AA2099-T8 aluminium alloy. Corros. Sci. 53 (12), 4141-4151. https://doi.org/10.1016/j.corsci.2011.08.023

Ma, Y., Chen, X., Zhou, X., Yi, Y., Liao, Y., Huang, W. (2015a). Microstructural origin of localized corrosion in anodized AA2099-T8 aluminium-lithium alloy. Surf. Interface Anal. 48 (8), 739-744. https://doi.org/10.1002/sia.5856

Ma, Y., Zhou, X., Huang, W., Liao, Y., Chen, X., Zhang, X., Thompson, G.E. (2015b). Crystallographic defects induced localised corrosion in AA2099-T8 aluminium alloy. Corros. Eng. Sci. Technol. 50 (6), 420-424. https://doi.org/10.1179/1743278214Y.0000000237

Ma, Y.-L., Zhou, X.-R., Meng, X.-M., Huang, W.-J., Liao, Y., Chen, X.-L., Yi, Y.-N., Zhang, X.-X., Thompson, G.E. (2016). Influence of thermomechanical treatments on localized corrosion susceptibility and propagation mechanism of AA2099 Al-Li alloy. T. Nonferr. Metal. Soc. China 26 (6), 1472-1481. https://doi.org/10.1016/S1003-6326(16)64252-8

Mouritz, A.P. (2012). Introduction to Aerospace Materials. Woodhead Publishing, PA, USA. https://doi.org/10.1533/9780857095152

Pérez, N. (2004). Electrochemistry and Corrosion Science. Springer, NY, USA. https://doi.org/10.1007/b118420

Pérez, O.E.L., Sánchez, M.D., Teijelo, M.L. (2010). Characterization of growth of anodic antimony oxide films by ellipsometry and XPS. J. Electroanal. Chem. 645 (2), 143-148. https://doi.org/10.1016/j.jelechem.2010.04.023

Pivac, I., Barbir, F. (2016). Inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells - A review. J. Power Sources 326, 112-119. https://doi.org/10.1016/j.jpowsour.2016.06.119

Romios, M., Tiraschi, R., Ogren, J.R., Es-Said, O.S., Parrish, C., Babel, H.W. (2005). Design of multistep aging treatments of 2099 (C458) Al-Li alloy. J. Mater. Eng. Perform. 14, 641-646. https://doi.org/10.1361/105994905X64594

Runge, J.M. (2018). The Metallurgy of Anodizing Aluminum. Springer, Chicago, USA. https://doi.org/10.1007/978-3-319-72177-4

Ryu, S.-K., Park, B.-J., Park, S.-J. (1999). XPS Analysis of Carbon Fiber Surfaces-Anodized and Interfacial Effects in Fiber-Epoxy Composites. J. Colloid Interface Sci. 215 (1), 167-169. https://doi.org/10.1006/jcis.1999.6240 PMid:10362485

Scully, J.R., Silverman, D.C., Kendig, M.W. (1993). Electrochemical impedance: Analysis and interpretation. STP 1188. ASTM International, USA. https://doi.org/10.1520/STP1188-EB

Skeldon, P., Wang, H.W., Thompson G.E. (1997). Formation and characterization of self-lubricating MoS2precursor films on anodized aluminium. Wear 206 (1-2), 187-196. https://doi.org/10.1016/S0043-1648(96)07350-4

Tian, Y., Robson, J.D., Riekehr, S., Kashaev, N., Wang, L., Lowe, T., Karanika, A. (2016). Process optimization of dual-laser beam welding of advanced Al-Li alloys through hot cracking susceptibility modeling. Metall. Mater. Trans. A 47, 3533-3544. https://doi.org/10.1007/s11661-016-3509-4

Yang, Y., Cheng, J., Liu, S., Wang, H., Dong, P. (2019). Effect of NaAlO2 sealing on corrosion resistance of 2024 aluminum alloy anodized film. Mater. Corros. 70 (1), 120-127. https://doi.org/10.1002/maco.201810327

Yu, S., Wang, L., Wu, C., Feng, T., Cheng, Y., Bu, Z., Zhu, S. (2020). Studies on the corrosion performance of an effective and novel sealing anodic oxide coating. J. Alloys Compd. 817, 153257. https://doi.org/10.1016/j.jallcom.2019.153257

Zhang, F., Örnek, C., Nilsson, J.O., Pan, J. (2020). Anodisation of aluminium alloy AA7075-Influence of intermetallic particles on anodic oxide growth. Corros. Sci. 164, 108319. https://doi.org/10.1016/j.corsci.2019.108319

Zuo, Y., Zhao, P.H., Zhao, J.M. (2003). The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions. Surf. Coat. Technol. 166, 237-242. https://doi.org/10.1016/S0257-8972(02)00779-X

Publicado

2020-12-14

Cómo citar

Samaniego-Gámez, P. ., Almeraya-Calderón, F. ., Martin, U. ., Ress, J. ., Gaona-Tiburcio, C. ., Silva-Vidaurri, L. ., Cabral-Miramontes, J. ., Bastidas, J. M. ., Chacón-Nava, J. G. ., & Bastidas, D. M. . (2020). Efecto del tratamiento de sellado en el comportamiento frente a corrosión de la aleación anodizada de aluminio-litio AA2099. Revista De Metalurgia, 56(4), e180. https://doi.org/10.3989/revmetalm.180

Número

Sección

Artículos

Datos de los fondos

Consejo Nacional de Ciencia y Tecnología
Números de la subvención CB 253272;A1-S-8882

University of Akron
Números de la subvención 639430